Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Several nonparametric estimators of autocovariance functions. Procedures for constructing their confidence regions by using bootstrap techniques. Methods to correct autocovariance estimators and several tools for analysing and comparing them. Supplementary functions, including kernel computations and discrete cosine Fourier transforms. For more details see Bilchouris and Olenko (2025) <doi:10.17713/ajs.v54i1.1975>.
Execute Nonlinear Mixed Effects (NLME) models for pharmacometrics using a shiny interface. Specify engine parameters and select from different run options, including simple estimation, stepwise covariate search, bootstrapping, simulation, visual predictive check, and more. Models are executed using the Certara.RsNLME package.
This package provides methods to help selecting General Circulation Models (GCMs) in the context of projecting models to future scenarios. It is provided clusterization algorithms, distance and correlation metrics, as well as a tailor-made algorithm to detect the optimum subset of GCMs that recreate the environment of all GCMs as proposed in Esser et al. (2025) <doi:10.1111/gcb.70008>.
Numerical integration of cause-specific survival curves to arrive at cause-specific cumulative incidence functions, with three usage modes: 1) Convenient API for parametric survival regression followed by competing-risk analysis, 2) API for CFC, accepting user-specified survival functions in R, and 3) Same as 2, but accepting survival functions in C++. For mathematical details and software tutorial, see Mahani and Sharabiani (2019) <DOI:10.18637/jss.v089.i09>.
Small package to clean the R console and the R environment with the call of just one function.
This package implements the JSON, INI, YAML and TOML parser for R setting and writing of configuration file. The functionality of this package is similar to that of package config'.
This package provides tools for analyzing performances of cricketers based on stats in ESPN Cricinfo Statsguru. The toolset can be used for analysis of Tests,ODIs and Twenty20 matches of both batsmen and bowlers. The package can also be used to analyze team performances.
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. The current version supports conditional MDS (based on either conditional SMACOF in Bui (2021) <arXiv:2111.13646> or closed-form solution in Bui (2022) <doi:10.1016/j.patrec.2022.11.007>) and conditional ISOMAP in Bui (2021) <arXiv:2111.13646>.
This package performs adjustments of a user-supplied independence loglikelihood function using a robust sandwich estimator of the parameter covariance matrix, based on the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>. This can be used for cluster correlated data when interest lies in the parameters of the marginal distributions or for performing inferences that are robust to certain types of model misspecification. Functions for profiling the adjusted loglikelihoods are also provided, as are functions for calculating and plotting confidence intervals, for single model parameters, and confidence regions, for pairs of model parameters. Nested models can be compared using an adjusted likelihood ratio test.
This is an opinionated wrapper around the python-chess package. It allows users to read and write PGN files as well as create and explore game trees such as the ones seen in chess books.
This package provides a general test for conditional independence in supervised learning algorithms as proposed by Watson & Wright (2021) <doi:10.1007/s10994-021-06030-6>. Implements a conditional variable importance measure which can be applied to any supervised learning algorithm and loss function. Provides statistical inference procedures without parametric assumptions and applies equally well to continuous and categorical predictors and outcomes.
Reads demographic data from a variety of public data sources, extracting and harmonizing variables useful for the study of childfree individuals. The identification of childfree individuals and those with other family statuses uses Neal & Neal's (2024) "A Framework for Studying Adults who Neither have Nor Want Children" <doi:10.1177/10664807231198869>; A pre-print is available at <doi:10.31234/osf.io/fa89m>.
Find the location of the code for an R package based on the package's name or string representation. Checks on CRAN based on information in the URL field or BioConductor and GitHub based on constructing a URL, and verifies all paths via testing for a successful response. This can be useful when automating static code analysis based on a list of package names, and similar tasks.
Mapas terrestres con topologias simplificadas. Estos mapas no tienen precision geodesica, por lo que aplica el DFL-83 de 1979 de la Republica de Chile y se consideran referenciales sin validez legal. No se incluyen los territorios antarticos y bajo ningun evento estos mapas significan que exista una cesion u ocupacion de territorios soberanos en contra del Derecho Internacional por parte de Chile. Esta paquete esta documentado intencionalmente en castellano asciificado para que funcione sin problema en diferentes plataformas. (Terrestrial maps with simplified toplogies. These maps lack geodesic precision, therefore DFL-83 1979 of the Republic of Chile applies and are considered to have no legal validity. Antartic territories are excluded and under no event these maps mean there is a cession or occupation of sovereign territories against International Laws from Chile. This package was intentionally documented in asciified spanish to make it work without problem on different platforms.).
Generate and analyse crossover designs from combinatorial or search algorithms as well as from literature and a GUI to access them.
After using this, a publication-ready correlation table with p-values indicated will be created. The input can be a full data frame; any string and Boolean terms will be dropped as part of functionality. Correlations and p-values are calculated using the Hmisc framework. Output of the correlation_matrix() function is a table of strings; this gets saved out to a .csv2 with the save_correlation_matrix() function for easy insertion into a paper. For more details about the process, consult <https://paulvanderlaken.com/2020/07/28/publication-ready-correlation-matrix-significance-r/>.
Based on individual market shares of all participants in a market or space, the package offers a set of different structural and concentration measures frequently - and not so frequently - used in research and in practice. Measures can be calculated in groups or individually. The calculated measure or the resulting vector in table format should help practitioners make more informed decisions. Methods used in this package are from: 1. Chang, E. J., Guerra, S. M., de Souza Penaloza, R. A. & Tabak, B. M. (2005) "Banking concentration: the Brazilian case". 2. Cobham, A. and A. Summer (2013). "Is It All About the Tails? The Palma Measure of Income Inequality". 3. Garcia Alba Idunate, P. (1994). "Un Indice de dominancia para el analisis de la estructura de los mercados". 4. Ginevicius, R. and S. Cirba (2009). "Additive measurement of market concentration" <doi:10.3846/1611-1699.2009.10.191-198>. 5. Herfindahl, O. C. (1950), "Concentration in the steel industry" (PhD thesis). 6. Hirschmann, A. O. (1945), "National power and structure of foreign trade". 7. Melnik, A., O. Shy, and R. Stenbacka (2008), "Assessing market dominance" <doi:10.1016/j.jebo.2008.03.010>. 8. Palma, J. G. (2006). "Globalizing Inequality: Centrifugal and Centripetal Forces at Work". 9. Shannon, C. E. (1948). "A Mathematical Theory of Communication". 10. Simpson, E. H. (1949). "Measurement of Diversity" <doi:10.1038/163688a0>.
As different antipsychotic medications have different potencies, the doses of different medications cannot be directly compared. Various strategies are used to convert doses into a common reference so that comparison is meaningful. Chlorpromazine (CPZ) has historically been used as a reference medication into which other antipsychotic doses can be converted, as "chlorpromazine-equivalent doses". Using conversion keys generated from widely-cited scientific papers, e.g. Gardner et. al 2010 <doi:10.1176/appi.ajp.2009.09060802> and Leucht et al. 2016 <doi:10.1093/schbul/sbv167>, antipsychotic doses are converted to CPZ (or any specified antipsychotic) equivalents. The use of the package is described in the included vignette. Not for clinical use.
Fits a constrained regression model for an ordinal response with ordinal predictors and possibly others, Espinosa and Hennig (2019) <DOI:10.1007/s11222-018-9842-2>. The parameter estimates associated with an ordinal predictor are constrained to be monotonic. If a monotonicity direction (isotonic or antitonic) is not specified for an ordinal predictor by the user, then one of the available methods will either establish it or drop the monotonicity assumption. Two monotonicity tests are also available to test the null hypothesis of monotonicity over a set of parameters associated with an ordinal predictor.
Computerized tomography (CT) can be used to assess certain wood properties when wood disks or logs are scanned. Wood density profiles (i.e. variations of wood density from pith to bark) can yield important information used for studies in forest resource assessment, wood quality and dendrochronology studies. The first step consists in transforming grey values from the scan images to density values. The packages then proposes a unique method to automatically locate the pith by combining an adapted Hough Transform method and a one-dimensional edge detector. Tree ring profiles (average ring density, earlywood and latewood density, ring width and percent latewood for each ring) are then obtained.
This package provides functions to carry out the most important crystallographic calculations for crystal structures made of 1d Gaussian-shaped atoms, especially useful for methods development. Main reference: E. Smith, G. Evans, J. Foadi (2017) <doi:10.1088/1361-6404/aa8188>.
The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The cmsafops R-package provides a collection of R-operators for the analysis and manipulation of CM SAF NetCDF formatted data. Other CF conform NetCDF data with time, longitude and latitude dimension should be applicable, but there is no guarantee for an error-free application. CM SAF climate data records are provided for free via (<https://wui.cmsaf.eu/safira>). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>).
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.
This package performs copy number variants association analysis with Lasso and Weighted Fusion penalized regression. Creates a "CNV profile curve" to represent an individualâ s CNV events across a genomic region so to capture variations in CNV length and dosage. When evaluating association, the CNV profile curve is directly used as a predictor in the regression model, avoiding the need to predefine CNV loci. CNV profile regression estimates CNV effects at each genome position, making the results comparable across different studies. The penalization encourages sparsity in variable selection with a Lasso penalty and encourages effect smoothness between consecutive CNV events with a weighted fusion penalty, where the weight controls the level of smoothing between adjacent CNVs. For more details, see Si (2024) <doi:10.1101/2024.11.23.624994>.