Runs resampling-based tests jointly, e.g., sign-flip score tests from Hemerik et al., (2020) <doi:10.1111/rssb.12369>, to allow for multivariate testing, i.e., weak and strong control of the Familywise Error Rate or True Discovery Proportion.
The monotone package contains a fast up-and-down-blocks implementation for the pool-adjacent-violators algorithm for simple linear ordered monotone regression, including two spin-off functions for unimodal and bivariate monotone regression (see <doi:10.18637/jss.v102.c01>).
This package implements state-of-the-art block bootstrap methods for extreme value statistics based on block maxima. Includes disjoint blocks, sliding blocks, relying on a circular transformation of blocks. Fast C++ backends (via Rcpp') ensure scalability for large time series.
The utility of this package includes finite mixture modeling and model-based clustering through Manly mixture models by Zhu and Melnykov (2016) <DOI:10.1016/j.csda.2016.01.015>. It also provides capabilities for forward and backward model selection procedures.
Compute case-wise and cluster-wise derivative for mixed effects models with respect to fixed effects parameter, random effect (co)variances, and residual variance. This material is partially based on work supported by the National Science Foundation under Grant Number 1460719.
Consistent user interface to the most common regression and classification algorithms, such as random forest, neural networks, C5 trees and support vector machines, complemented with a handful of auxiliary functions, such as variable importance and a tuning function for the parameters.
This package provides several classifiers based on probabilistic models. These classifiers allow to model the dependence structure of continuous features through bivariate copula functions and graphical models, see Salinas-Gutiérrez et al. (2014) <doi:10.1007/s00180-013-0457-y>.
R package to compute Incoming Solar Radiation (insolation) for palaeoclimate studies. Features three solutions: Berger (1978), Berger and Loutre (1991) and Laskar et al. (2004). Computes daily-mean, season-averaged and annual means and for all latitudes, and polar night dates.
Models can be improved by post-processing class probabilities, by: recalibration, conversion to hard probabilities, assessment of equivocal zones, and other activities. probably contains tools for conducting these operations as well as calibration tools and conformal inference techniques for regression models.
Extends ggplot2 to help replace points in a scatter plot with pie-chart glyphs showing the relative proportions of different categories. The pie glyphs are independent of the axes and plot dimensions, to prevent distortions when the plot dimensions are changed.
Sensitivity analysis in structural equation modeling using influence measures and diagnostic plots. Support leave-one-out casewise sensitivity analysis presented by Pek and MacCallum (2011) <doi:10.1080/00273171.2011.561068> and approximate casewise influence using scores and casewise likelihood.
Downloads data from the UK Police public data API, the full docs of which are available at <https://data.police.uk/docs/>. Includes data on police forces and police force areas, crime reports, and the use of stop-and-search powers.
Provide functions for performing abundance and compositional based binning on metagenomic samples, directly from FASTA or FASTQ files. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on input FASTA/FASTQ files for fast execution.
The package provides a set of functions to interact with the Google Cloud Platform (GCP) services on the AnVIL platform. The package is designed to work with the AnVIL package. User-level interaction with this package should be minimal.
BgeeCall allows generating present/absent gene expression calls without using an arbitrary cutoff like TPM<1. Calls are generated based on reference intergenic sequences. These sequences are generated based on expression of all RNA-Seq libraries of each species integrated in Bgee.
This package contains functions to estimate L-moments and trimmed L-moments from the data. It also contains functions to estimate the parameters of the normal polynomial quantile mixture and the Cauchy polynomial quantile mixture from L-moments and trimmed L-moments.
This package parses HTTP request data in application/json, multipart/form-data, or application/x-www-form-urlencoded format. It includes an example of hosting and parsing HTML form data in R using either httpuv or Rhttpd.
This package includes functions for processing GeoJson objects relying on RFC 7946. The geojson encoding is based on json11, a tiny JSON library for C++11. Furthermore, the source code is exported in R through the Rcpp and RcppArmadillo packages.
Simultaneous tests and confidence intervals for general linear hypotheses in parametric models, including linear, generalized linear, linear mixed effects, and survival models. The package includes demos reproducing analyzes presented in the book "Multiple Comparisons Using R" (Bretz, Hothorn, Westfall, 2010, CRC Press).
Python-RSA is a pure-Python RSA implementation. It supports encryption and decryption, signing and verifying signatures, and key generation according to PKCS#1 version 1.5. It can be used as a Python library as well as on the command line.
Debugging functionality for Ruby. This is completely rewritten debug.rb which was contained by the ancient Ruby versions. It is included with Ruby itself, but this package is made available so that the latest version can be made available independently from Ruby.
This package provides a general-purpose optimisation engine that supports i) Monte Carlo optimisation with Metropolis criterion [Metropolis et al. (1953) <doi:10.1063/1.1699114>, Hastings (1970) <doi:10.1093/biomet/57.1.97>] and Acceptance Ratio Simulated Annealing [Kirkpatrick et al. (1983) <doi:10.1126/science.220.4598.671>, Ä erný (1985) <doi:10.1007/BF00940812>] on multiple cores, and ii) Acceptance Ratio Replica Exchange Monte Carlo Optimisation. In each case, the system pseudo-temperature is dynamically adjusted such that the observed acceptance ratio is kept near to the desired (fixed or changing) acceptance ratio.
The A() function calculates the A statistic, a nonparametric measure of effect size for two independent groups thatâ s also known as the probability of superiority (Ruscio, 2008), along with its standard error and a confidence interval constructed using bootstrap methods (Ruscio & Mullen, 2012). Optional arguments can be specified to calculate variants of the A statistic developed for other research designs (e.g., related samples, more than two independent groups or related samples; Ruscio & Gera, 2013). <DOI: 10.1037/1082-989X.13.1.19>. <DOI: 10.1080/00273171.2012.658329>. <DOI: 10.1080/00273171.2012.738184>.
Offers tools to estimate the climate representativeness of reference polygons and quantifies its transformation under future climate change scenarios. Approaches described in Mingarro and Lobo (2018) <doi:10.32800/abc.2018.41.0333> and Mingarro and Lobo (2022) <doi:10.1017/S037689292100014X>.