Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Map functions while capturing results, errors, warnings, messages and other output tidily, then filter and summarise data frames or lists on the basis of those side effects.
This package provides an interactive shiny web application for constructing, analyzing, and visualizing composite indices from multidimensional datasets. Users can upload or select indicator data, group variables into logical categories, apply normalization and weighting methods (such as equal or custom schemes), and compute aggregate composite indices. The shiny interface includes tools for exploring results through tables, plots, and data exports, making it useful for researchers, policymakers, and analysts interested in index-based evaluations.
Univariate and multivariate temporal and spatial diversity indices, rank abundance curves, and community stability measures. The functions implement measures that are either explicitly temporal and include the option to calculate them over multiple replicates, or spatial and include the option to calculate them over multiple time points. Functions fall into five categories: static diversity indices, temporal diversity indices, spatial diversity indices, rank abundance curves, and community stability measures. The diversity indices are temporal and spatial analogs to traditional diversity indices. Specifically, the package includes functions to calculate community richness, evenness and diversity at a given point in space and time. In addition, it contains functions to calculate species turnover, mean rank shifts, and lags in community similarity between two time points. Details of the methods are available in Hallett et al. (2016) <doi:10.1111/2041-210X.12569> and Avolio et al. (2019) <doi:10.1002/ecs2.2881>.
Imports PxStat data in JSON-stat format and (optionally) reshapes it into wide format. The Central Statistics Office (CSO) is the national statistical institute of Ireland and PxStat is the CSOs online database of Official Statistics. This database contains current and historical data series compiled from CSO statistical releases and is accessed at <https://data.cso.ie>. The CSO PxStat Application Programming Interface (API), which is accessed in this package, provides access to PxStat data in JSON-stat format at <https://data.cso.ie>. This dissemination tool allows developers machine to machine access to CSO PxStat data.
Light weight implementation of the standard distribution functions for the chi distribution, wrapping those for the chi-squared distribution in the stats package.
The cito package provides a user-friendly interface for training and interpreting deep neural networks (DNN). cito simplifies the fitting of DNNs by supporting the familiar formula syntax, hyperparameter tuning under cross-validation, and helps to detect and handle convergence problems. DNNs can be trained on CPU, GPU and MacOS GPUs. In addition, cito has many downstream functionalities such as various explainable AI (xAI) metrics (e.g. variable importance, partial dependence plots, accumulated local effect plots, and effect estimates) to interpret trained DNNs. cito optionally provides confidence intervals (and p-values) for all xAI metrics and predictions. At the same time, cito is computationally efficient because it is based on the deep learning framework torch'. The torch package is native to R, so no Python installation or other API is required for this package.
This package provides a collection of functions to calculate Composite Indicators methods, focusing, in particular, on the normalisation and weighting-aggregation steps, as described in OECD Handbook on constructing composite indicators: methodology and user guide, 2008, Vidoli and Fusco and Mazziotta <doi:10.1007/s11205-014-0710-y>, Mazziotta and Pareto (2016) <doi:10.1007/s11205-015-0998-2>, Van Puyenbroeck and Rogge <doi:10.1016/j.ejor.2016.07.038> and other authors.
Computes a novel metric of affinity between two entities based on their co-occurrence (using binary presence/absence data). The metric and its MLE, alpha hat, were advanced in Mainali, Slud, et al, 2021 <doi:10.1126/sciadv.abj9204>. Various types of confidence intervals and median interval were developed in Mainali and Slud, 2022 <doi:10.1101/2022.11.01.514801>. The `finches` dataset is now bundled internally (no longer pulled via the cooccur package, which has been dropped).
This package provides functions that format statistical output in a way that can be inserted into R Markdown documents. This is analogous to the apa_print() functions in the papaja package but prints Markdown or LaTeX syntax.
Chinese numerals processing in R, such as conversion between Chinese numerals and Arabic numerals as well as detection and extraction of Chinese numerals in character objects and string. This package supports the casual scale naming system and the respective SI prefix systems used in mainland China and Taiwan: "The State Council's Order on the Unified Implementation of Legal Measurement Units in Our Country" The State Council of the People's Republic of China (1984) "Names, Definitions and Symbols of the Legal Units of Measurement and the Decimal Multiples and Submultiples" Ministry of Economic Affairs (2019) <https://gazette.nat.gov.tw/egFront/detail.do?metaid=108965>.
The beta-binomial test is used for significance analysis of independent samples by Pham et al. (2010) <doi:10.1093/bioinformatics/btp677>. The inverted beta-binomial test is used for paired sample testing, e.g. pre-treatment and post-treatment data, by Pham and Jimenez (2012) <doi:10.1093/bioinformatics/bts394>.
This package provides a wrapper for the U.S. Census Bureau APIs that returns data frames of Census data and metadata. Available datasets include the Decennial Census, American Community Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, Population Estimates and Projections, and more.
Package to analyze the clinical utility of a biomarker. It provides the clinical utility curve, clinical utility table, efficacy of a biomarker, clinical efficacy curve and tests to compare efficacy between markers.
This package creates multi-label cell-types for single-cell RNA-sequencing data based on weighted VAM scoring of cell-type specific gene sets. Schiebout, Frost (2022) <https://psb.stanford.edu/psb-online/proceedings/psb22/schiebout.pdf>.
An interactive application for working with contingency Tables. The application has a template for solving contingency table problems like chisquare test of independence,association plot between two categorical variables. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/CategoricalDataAnalysis/>.
Randomization-Based Inference for customized experiments. Computes Fisher-Exact P-Values alongside null randomization distributions. Retrieves counternull sets and generates counternull distributions. Computes Fisher Intervals and Fisher-Adjusted P-Values. Package includes visualization of randomization distributions and Fisher Intervals. Users can input custom test statistics and their own methods for randomization. Rosenthal and Rubin (1994) <doi:10.1111/j.1467-9280.1994.tb00281.x>.
Noise in the time-series data significantly affects the accuracy of the Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression are considered here). Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the time series data into sub-series and help to improve the model performance. The models can achieve higher prediction accuracy than the traditional ML models. Two models have been provided here for time series forecasting. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
This package provides R users with direct access to genomic and clinical data from the cBioPortal web resource via user-friendly functions that wrap cBioPortal's existing API endpoints <https://www.cbioportal.org/api/swagger-ui/index.html>. Users can browse and query genomic data on mutations, copy number alterations and fusions, as well as data on tumor mutational burden ('TMB'), microsatellite instability status ('MSI'), FACETS and select clinical data points (depending on the study). See <https://www.cbioportal.org/> and Gao et al., (2013) <doi:10.1126/scisignal.2004088> for more information on the cBioPortal web resource.
Client for the Open Citations Corpus (<http://opencitations.net/>). Includes a set of functions for getting one identifier type from another, as well as getting references and citations for a given identifier.
This package provides functions to test and compare causal models using Confirmatory Path Analysis.
This tool performs pairwise correlation analysis and estimate causality. Particularly, it is useful for detecting the metabolites that would be altered by the gut bacteria.
Allows clinicians to predict survival probabilities over the next two years for cystic fibrosis patients, based on the clinical prediction models published in Stanojevic et al. (2019) <doi:10.1183/13993003.00224-2019>.
Allows users to input their data, segmentation and function used for the segmentation (and additional arguments) and the package calculates the influence of the data on the changepoint locations, see Wilms et al. (2022) <doi:10.1080/10618600.2021.2000873>. Currently this can only be used with the changepoint package functions to identify changes, but we plan to extend this. There are options for different types of graphics to assess the influence.
Predicts anticancer peptides using random forests trained on the n-gram encoded peptides. The implemented algorithm can be accessed from both the command line and shiny-based GUI. The CancerGram model is too large for CRAN and it has to be downloaded separately from the repository: <https://github.com/BioGenies/CancerGramModel>. For more information see: Burdukiewicz et al. (2020) <doi:10.3390/pharmaceutics12111045>.