S-Core Graph Decomposition algorithm for graphs. This is a method for decomposition of a weighted graph, as proposed by Eidsaa and Almaas (2013) <doi:10.1103/PhysRevE.88.062819>. The high speed and the low memory usage make it suitable for large graphs.
Simple class to hold contents of a SMET file as specified in Bavay (2021) <https://code.wsl.ch/snow-models/meteoio/-/blob/master/doc/SMET_specifications.pdf>. There numerical meteorological measurements are all based on MKS (SI) units and timestamp is standardized to UTC time.
Test published summary statistics for consistency (Brown and Heathers, 2017, <doi:10.1177/1948550616673876>; Allard, 2018, <https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/>; Heathers and Brown, 2019, <https://osf.io/5vb3u/>). The package also provides infrastructure for implementing new error detection techniques.
Potential randomization schemes are prospectively evaluated when units are assigned to treatment arms upon entry into the experiment. The schemes are evaluated for balance on covariates and on predictability (i.e., how well could a site worker guess the treatment of the next unit enrolled).
This package provides a convenient way to log scalars, images, audio, and histograms in the tfevent record file format. Logged data can be visualized on the fly using TensorBoard', a web based tool that focuses on visualizing the training progress of machine learning models.
This package provides a suite of functions for analysing, interpreting, and visualising time-series features calculated from different feature sets from the theft package. Implements statistical learning methodologies described in Henderson, T., Bryant, A., and Fulcher, B. (2023) <doi:10.48550/arXiv.2303.17809>.
This package provides a convenient wrapper for the UM-Bridge protocol. UM-Bridge is a protocol designed for coupling uncertainty quantification (or statistical / optimization) software to numerical models. A model is represented as a mathematical function with optional support for derivatives via Jacobian actions etc.
R is used by a vast array of people for a vast array of purposes - including web analytics. This package contains functions for consuming and munging various common forms of request log, including the Common and Combined Web Log formats and various Amazon access logs.
cl-ratify is a collection of utilities to perform validation checks and parsing. The main intention of usage for this is in web-applications in order to check form inputs for correctness and automatically parse them into their proper representations or return meaningful errors.
Aims at loading Google Adwords data into R. Adwords is an online advertising service that enables advertisers to display advertising copy to web users (see <https://developers.google.com/adwords/> for more information). Therefore the package implements three main features. First, the package provides an authentication process for R with the Google Adwords API (see <https://developers.google.com/adwords/api/> for more information) via OAUTH2. Second, the package offers an interface to apply the Adwords query language in R and query the Adwords API with ad-hoc reports. Third, the received data are transformed into suitable data formats for further data processing and data analysis.
Ritornello is a ChIP-seq peak calling algorithm based on signal processing that can accurately call binding events without the need to do a pair total DNA input or IgG control sample. It has been tested for use with narrow binding events such as transcription factor ChIP-seq.
This package constructs basis functions of B-splines, M-splines, I-splines, convex splines (C-splines), periodic splines, natural cubic splines, generalized Bernstein polynomials, their derivatives, and integrals (except C-splines) by closed-form recursive formulas. It also contains a C++ head-only library integrated with Rcpp.
This package provides an estimation and inference methods for models of conditional quantiles: linear and nonlinear parametric and non-parametric models for conditional quantiles of a univariate response and several methods for handling censored survival data. Portfolio selection methods based on expected shortfall risk are also included.
This package performs projection predictive feature selection for generalized linear models and generalized linear and additive multilevel models. The package is compatible with the rstanarm and brms packages, but other reference models can also be used. See the package vignette for more information and examples.
Comprehensive and flexible logging library written in Ruby for use in Ruby programs. It features a hierarchical logging system of any number of levels, custom level names, logger inheritance, multiple output destinations per log event, execution tracing, custom formatting, thread safteyness, XML and YAML configuration, and more.
Splatter is a package for the simulation of single-cell RNA sequencing count data. It provides a simple interface for creating complex simulations that are reproducible and well-documented. Parameters can be estimated from real data and functions are provided for comparing real and simulated datasets.
Subtypes are defined as groups of samples that have distinct molecular and clinical features. Genomic data can be analyzed for discovering patient subtypes, associated with clinical data, especially for survival information. This package is aimed to identify subtypes that are both clinically relevant and biologically meaningful.
This package provides assessment tools for regression models with discrete and semicontinuous outcomes proposed in Yang (2023) <doi:10.48550/arXiv.2308.15596>. It calculates the double probability integral transform (DPIT) residuals, constructs QQ plots of residuals and the ordered curve for assessing mean structures.
Colour palettes and a ggplot2 theme to follow the UK Government Analysis Function best practice guidance for producing data visualisations, available at <https://analysisfunction.civilservice.gov.uk/policy-store/data-visualisation-charts/>. Includes continuous and discrete colour and fill scales, as well as a ggplot2 theme.
This package implements Bayesian marginal structural models for causal effect estimation with time-varying treatment and confounding. It includes an extension to handle informative right censoring. The Bayesian importance sampling weights are estimated using JAGS. See Saarela (2015) <doi:10.1111/biom.12269> for methodological details.
Reconstruct networks from multi-omics data sets with the collaborative graphical lasso (coglasso) algorithm described in Albanese, A., Kohlen, W., and Behrouzi, P. (2024) <doi:10.48550/arXiv.2403.18602>. Use the main wrapper function `bs()` to build and select a multi-omics network.
This package provides a toolbox for descriptive statistics, based on the computation of frequency and contingency tables. Several statistical functions and plot methods are provided to describe univariate or bivariate distributions of factors, integer series and numerical series either provided as individual values or as bins.
This package provides functions for analyzing dichotomous choice contingent valuation (CV) data. It provides functions for estimating parametric and nonparametric models for single-, one-and-one-half-, and double-bounded CV data. For details, see Aizaki et al. (2022) <doi:10.1007/s42081-022-00171-1>.
Detrend fluorescence microscopy image series for fluorescence fluctuation and correlation spectroscopy ('FCS and FFS') analysis. This package contains functionality published in a 2016 paper <doi:10.1093/bioinformatics/btx434> but it has been extended since then with the Robin Hood algorithm and thus contains unpublished work.