Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Directory reads and summaries are provided for one or more of the subdirectories of the <https://cran.r-project.org/incoming/> directory, and a compact summary object is returned. The package name is a contraption of CRAN Incoming Watcher'.
There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D.R., Rahal, A. (2019) <https://tinyurl.com/kkdc9rk8>.
This package provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2025) <doi:10.1017/rsm.2025.5> for a detailed guide on using the package.
The Large Language Model (LLM) represents a groundbreaking advancement in data science and programming, and also allows us to extend the world of R. A seamless interface for integrating the OpenAI Web APIs into R is provided in this package. This package leverages LLM-based AI techniques, enabling efficient knowledge discovery and data analysis (see OpenAI Web APIs details <https://openai.com/blog/openai-api>). The previous functions such as seamless translation and image generation have been moved to other packages deepRstudio and stableDiffusion4R'.
Various estimators of causal effects based on inverse probability weighting, doubly robust estimation, and double machine learning. Specifically, the package includes methods for estimating average treatment effects, direct and indirect effects in causal mediation analysis, and dynamic treatment effects. The models refer to studies of Froelich (2007) <doi:10.1016/j.jeconom.2006.06.004>, Huber (2012) <doi:10.3102/1076998611411917>, Huber (2014) <doi:10.1080/07474938.2013.806197>, Huber (2014) <doi:10.1002/jae.2341>, Froelich and Huber (2017) <doi:10.1111/rssb.12232>, Hsu, Huber, Lee, and Lettry (2020) <doi:10.1002/jae.2765>, and others.
The congeneric normal-ogive model is a popular model for psychometric data (McDonald, R. P. (1997) <doi:10.1007/978-1-4757-2691-6_15>). This model estimates the model, calculates theoretical and concrete reliability coefficients, and predicts the latent variable of the model. This is the companion package to Moss (2020) <doi:10.31234/osf.io/nvg5d>.
Convert BCD (raw bytes) to decimal numbers and vice versa. BCD format is used to preserve decimals exactly, as opposed to the binary rounding errors inherent in "numeric" or "floating-point" formats.
Synthesizing joint distributions from marginal densities, focusing on controlling key statistical properties such as correlation for continuous data, mutual information for categorical data, and inducing Simpson's Paradox. Generate datasets with specified correlation structures for continuous variables, adjust mutual information between categorical variables, and manipulate subgroup correlations to intentionally create Simpson's Paradox. Joe (1997) <doi:10.1201/b13150> Sklar (1959) <https://en.wikipedia.org/wiki/Sklar%27s_theorem>.
Utilize the shiny interface to generate Goodness of Fit (GOF) plots and tables for Non-Linear Mixed Effects (NLME / NONMEM) pharmacometric models. From the interface, users can customize model diagnostics and generate the underlying R code to reproduce the diagnostic plots and tables outside of the shiny session. Model diagnostics can be included in a rmarkdown document and rendered to desired output format.
This package provides a toolkit for computing and visualizing CAPL-2 (Canadian Assessment of Physical Literacy, Second Edition; <https://www.capl-eclp.ca>) scores and interpretations from raw data.
Builds the coincident profile proposed by Martinez, W and Nieto, Fabio H and Poncela, P (2016) <doi:10.1016/j.spl.2015.11.008>. This methodology studies the relationship between a couple of time series based on the the set of turning points of each time series. The coincident profile establishes if two time series are coincident, or one of them leads the second.
Splits data into Gaussian type clusters using the Cross-Entropy Clustering ('CEC') method. This method allows for the simultaneous use of various types of Gaussian mixture models, for performing the reduction of unnecessary clusters, and for discovering new clusters by splitting them. CEC is based on the work of Spurek, P. and Tabor, J. (2014) <doi:10.1016/j.patcog.2014.03.006>.
This package implements the Changepoints for a Range of Penalties (CROPS) algorithm of Haynes et al. (2017) <doi:10.1080/10618600.2015.1116445> for finding all of the optimal segmentations for multiple penalty values over a continuous range.
This package implements lasso and ridge regression for dichotomised outcomes (<doi:10.1080/02664763.2023.2233057>), i.e., numerical outcomes that were transformed to binary outcomes. Such artificial binary outcomes indicate whether an underlying measurement is greater than a threshold.
This package contains a function, also called cchs', that calculates Estimator III of Borgan et al (2000), <DOI:10.1023/A:1009661900674>. This estimator is for fitting a Cox proportional hazards model to data from a case-cohort study where the subcohort was selected by stratified simple random sampling.
Matrix-variate covariance estimation via the Kronecker-core decomposition. Computes the Kronecker and core covariance matrices corresponding to an arbitrary covariance matrix, and provides an empirical Bayes covariance estimator that adaptively shrinks towards the space of separable covariance matrices. For details, see Hoff, McCormack and Zhang (2022) <arXiv:2207.12484> "Core Shrinkage Covariance Estimation for Matrix-variate data".
We design algorithms with linear time complexity with respect to the dimension for three commonly studied correlation structures, including exchangeable, decaying-product and K-dependent correlation structures, and extend the algorithms to generate binary data of general non-negative correlation matrices with quadratic time complexity. Jiang, W., Song, S., Hou, L. and Zhao, H. "A set of efficient methods to generate high-dimensional binary data with specified correlation structures." The American Statistician. See <doi:10.1080/00031305.2020.1816213> for a detailed presentation of the method.
Direct sparse covariance matrix estimation via the covariance graphical lasso by Bien, Tibshirani (2011) <doi:10.1093/biomet/asr054> using the fast coordinate descent algorithm of Wang (2014) <doi:10.1007/s11222-013-9385-5>.
This package contains a time series classification method that obtains a set of filters that maximize the between-class and minimize the within-class distances.
When taking online surveys, participants sometimes respond to items without regard to their content. These types of responses, referred to as careless or insufficient effort responding, constitute significant problems for data quality, leading to distortions in data analysis and hypothesis testing, such as spurious correlations. The R package careless provides solutions designed to detect such careless / insufficient effort responses by allowing easy calculation of indices proposed in the literature. It currently supports the calculation of longstring, even-odd consistency, psychometric synonyms/antonyms, Mahalanobis distance, and intra-individual response variability (also termed inter-item standard deviation). For a review of these methods, see Curran (2016) <doi:10.1016/j.jesp.2015.07.006>.
Developing general equilibrium models, computing general equilibrium and simulating economic dynamics with structural dynamic models in LI (2019, ISBN: 9787521804225) "General Equilibrium and Structural Dynamics: Perspectives of New Structural Economics. Beijing: Economic Science Press". When developing complex general equilibrium models, GE package should be used in addition to this package.
Compare two classifications or clustering solutions that may or may not have the same number of classes, and that might have hard or soft (fuzzy, probabilistic) membership. Calculate various metrics to assess how the clusters compare to each other. The calculations are simple, but provide a handy tool for users unfamiliar with matrix multiplication. This package is not geared towards traditional accuracy assessment for classification/ mapping applications - the motivating use case is for comparing a probabilistic clustering solution to a set of reference or existing class labels that could have any number of classes (that is, without having to degrade the probabilistic clustering to hard classes).
Data manipulation for Coupled Model Intercomparison Project, Phase-6 (CMIP6) hydroclimatic data. The files are archived in the Federated Research Data Repository (FRDR) (Rajulapati et al, 2024, <doi:10.20383/103.0829>). The data set is described in Abdelmoaty et al. (2025, <doi:10.1038/s41597-025-04396-z>).
Calculate agrometeorological variables for crops including growing degree days (McMaster, GS & Wilhelm, WW (1997) <doi:10.1016/S0168-1923(97)00027-0>), cumulative rainfall, number of stress days and cumulative or mean radiation and evaporation. Convert dates to day of year and vice versa. Also, download curated and interpolated Australian weather data from the Queensland Government DES longpaddock website <https://www.longpaddock.qld.gov.au/>. This data is freely available under the Creative Commons 4.0 licence.