Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a flexible toolbox for observation planning and scheduling. When complete, the goal is to be easy for Python beginners and new observers to to pick up, but powerful enough for observatories preparing nightly and long-term schedules.
Features:
calculate rise/set/meridian transit times, alt/az positions for targets at observatories anywhere on Earth
built-in plotting convenience functions for standard observation planning plots (airmass, parallactic angle, sky maps)
determining observability of sets of targets given an arbitrary set of constraints (i.e., altitude, airmass, moon separation/illumination, etc.)
This package provides a history of astronomy library. Current Features:
define standard positional numeral systems with standard arithmetics (BasedReal)
set your own precision contexts and algorithms on arithmetical operations (PrecisionContext)
keep track of all operations
build or import ancient astronomical tables
perform arithmetical and statistical operations
support for BasedReal values
define new calendar types
date conversions
collection of mathematical models used for all kinds of geocentric astronomical tables
APLpy is a Python module aimed at producing publication-quality plots of astronomical imaging data in FITS format. The module uses matplotlib, a powerful and interactive plotting package. It is capable of creating output files in several graphical formats, including EPS, PDF, PS, PNG, and SVG.
Main features:
Make plots interactively or using scripts
Show grayscale, colorscale, and 3-color RGB images of FITS files
Generate co-aligned FITS cubes to make 3-color RGB images
Make plots from FITS files with arbitrary WCS (e.g. position-velocity)
Slice multi-dimensional FITS cubes
Overlay any number of contour sets
Overlay markers with fully customizable symbols
Plot customizable shapes like circles, ellipses, and rectangles
Overlay ds9 region files
Overlay coordinate grids
Show colorbars, scalebars, and beams
Customize the appearance of labels and ticks
Hide, show, and remove different contour and marker layers
Pan, zoom, and save any view as a full publication-quality plot
Save plots as EPS, PDF, PS, PNG, and SVG
The Advanced Scientific Data Format (ASDF) is a next-generation interchange format for scientific data. This package contains the Python implementation of the ASDF Standard.
Regions is an Astropy package for region handling.
This package includes an extension for the Python library asdf to add support for reading and writing chunked Zarr arrays, a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.
radiospectra provides support for some type of radio spectra in solar physics.
This package provides build downsampled previews of Space Telescope products.
This package implements functionality for simulating X-ray emission from astrophysical sources.
X-rays probe the high-energy universe, from hot galaxy clusters to compact objects such as neutron stars and black holes and many interesting sources in between. pyXSIM makes it possible to generate synthetic X-ray observations of these sources from a wide variety of models, whether from grid-based simulation codes such as FLASH, Enzo, and Athena, to particle-based codes such as Gadget and AREPO, and even from datasets that have been created 'by hand', such as from NumPy arrays. pyXSIM also provides facilities for manipulating the synthetic observations it produces in various ways, as well as ways to export the simulated X-ray events to other software packages to simulate the end products of specific X-ray observatories.
Colossus is a Python toolkit for calculations pertaining to cosmology, the large-scale structure of the universe, and the properties of dark matter halos.
GLNEMO2 is an interactive 3D visualization program which displays particles positions of the different components (gas, stars, disk, dark matter halo, bulge) of an N-body snapshot. It is a tool for running N-body simulations from isolated galaxies to cosmological simulations. It has a graphical user interface (based on QT 5.X API), uses a fast 3D engine (OPenGL and GLSL), and is generic with the possibility to load different kinds of input files.
CRDS is a package used for working with astronomical reference files for the HST and JWST telescopes. CRDS is useful for performing various operations on reference files or reference file assignment rules. CRDS is used to assign, check, and compare reference files and rules, and also to predict those datasets which should potentially be reprocessed due to changes in reference files or assignment rules. CRDS has versioned rules which define the assignment of references for each type and instrument configuration. CRDS has web sites corresponding to each project http://hst-crds.stsci.edu or https://jwst-crds.stsci.edu/ which record information about reference files and provide related services.
The Advanced Scientific Data Format (ASDF) is a next-generation interchange format for scientific data. This package contains the Python implementation of the ASDF Standard.
This package provides a structured, variable-resolution meshes, unstructured meshes, and discrete or sampled data such as particles. Focused on driving physically-meaningful inquiry, it has been applied in domains such as astrophysics, seismology, nuclear engineering, molecular dynamics, and oceanography.
Astrocut provides tools for making cutouts from sets of astronomical images with shared footprints. It is under active development.
Three main areas of functionality are included:
solving the specific problem of creating image cutouts from sectors of Transiting Exoplanet Survey Satellite full-frame images
general fits file cutouts including from single images and sets of images with the shared WCS/pixel scale
cutout post-processing functionality, including centering cutouts along a path (for moving targets) and combining cutouts
STWCS provides support for WCS distortion models and coordinate transformation for the imaging instruments on the Hubble Space Telescope).
This package provides a Python package of Roman Datamodels for the calibration pipelines started with the JWST calibration pipelines. The goal for the JWST pipelines was motivated primarily by the need to support FITS data files, specifically with isolating the details of where metadata and data were located in the FITS file from the representation of the same items within the Python code. That is not a concern for Roman since FITS format data files will not be used by the Roman calibration pipelines.
Weightwatcher is a program hat combines weight-maps, flag-maps and polygon data in order to produce control maps which can directly be used in astronomical image-processing packages like Drizzle, Swarp or SExtractor.
Astropy is a single core package for Astronomy in Python. It contains much of the core functionality and some common tools needed for performing astronomy and astrophysics.
This package implements a functionality for calibration of science observations from the Nancy Grace Roman Space Telescope.
The ccdproc package provides many of the necessary tools for processing of CCD images built on a framework to provide error propagation and bad pixel tracking throughout the reduction process.
LibXISF is C++ library that can read and write XISF files produced by PixInsight. It implements XISF 1.0 specification.
Ginga is a toolkit designed for building viewers for scientific image data in Python, visualizing 2D pixel data in numpy arrays. It can view astronomical data such as contained in files based on the FITS (Flexible Image Transport System) file format. It is written and is maintained by software engineers at the National Astronomical Observatory of Japan (NAOJ), the Space Telescope Science Institute (STScI), and other contributing entities.
The Ginga toolkit centers around an image display object which supports zooming and panning, color and intensity mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In addition to this widget, a general purpose "reference" FITS viewer is provided, based on a plugin framework. A fairly complete set of standard plugins are provided for features that we expect from a modern FITS viewer: panning and zooming windows, star catalog access, cuts, star pick/FWHM, thumbnails, etc.
SPLASH is visualisation tool for Smoothed Particle Hydrodynamics (SPH) simulations in one, two and three dimensions, developed mainly for astrophysics. It uses a command-line menu but data can be manipulated interactively in the plotting window.