Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Flexible tools to fit, tune and obtain absolute risk predictions from regularized cause-specific cox models with elastic-net penalty.
Cluster analysis with compositional data using the alpha--transformation. Relevant papers include: Tsagris M. and Kontemeniotis N. (2025), <doi:10.48550/arXiv.2509.05945>. Tsagris M.T., Preston S. and Wood A.T.A. (2011), <doi:10.48550/arXiv.1106.1451>. Garcia-Escudero Luis A., Gordaliza Alfonso, Matran Carlos, Mayo-Iscar Agustin. (2008), <doi:10.1214/07-AOS515>.
This package provides a simple package to grab cheat sheets and save them to your local computer.
Set of functions for the easy analyses of conditioning data.
Compute the certainty equivalents and premium risks as tools for risk-efficiency analysis. For more technical information, please refer to: Hardaker, Richardson, Lien, & Schumann (2004) <doi:10.1111/j.1467-8489.2004.00239.x>, and Richardson, & Outlaw (2008) <doi:10.2495/RISK080231>.
Easily install and load all packages and functions used in CourseKata courses. Aid teaching with helper functions and augment generic functions to provide cohesion between the network of packages. Learn more about CourseKata at <https://www.coursekata.org>.
Defines classes and methods to cross-validate various binary classification algorithms used for "class prediction" problems.
Computes a novel metric of affinity between two entities based on their co-occurrence (using binary presence/absence data). The metric and its MLE, alpha hat, were advanced in Mainali, Slud, et al, 2021 <doi:10.1126/sciadv.abj9204>. Various types of confidence intervals and median interval were developed in Mainali and Slud, 2022 <doi:10.1101/2022.11.01.514801>. The `finches` dataset is now bundled internally (no longer pulled via the cooccur package, which has been dropped).
This calculates a variety of different CIs for proportions and difference of proportions that are commonly used in the pharmaceutical industry including Wald, Wilson, Clopper-Pearson, Agresti-Coull and Jeffreys for proportions. And Miettinen-Nurminen (1985) <doi:10.1002/sim.4780040211>, Wald, Haldane, and Mee <https://www.lexjansen.com/wuss/2016/127_Final_Paper_PDF.pdf> for difference in proportions.
Facilitates the creation of xpose data objects from Nonlinear Mixed Effects (NLME) model outputs produced by Certara.RsNLME or Phoenix NLME. This integration enables users to utilize all ggplot2'-based plotting functions available in xpose for thorough model diagnostics and data visualization. Additionally, the package introduces specialized plotting functions tailored for covariate model evaluation, extending the analytical capabilities beyond those offered by xpose alone.
Create and learn Chain Event Graph (CEG) models using a Bayesian framework. It provides us with a Hierarchical Agglomerative algorithm to search the CEG model space. The package also includes several facilities for visualisations of the objects associated with a CEG. The CEG class can represent a range of relational data types, and supports arbitrary vertex, edge and graph attributes. A Chain Event Graph is a tree-based graphical model that provides a powerful graphical interface through which domain experts can easily translate a process into sequences of observed events using plain language. CEGs have been a useful class of graphical model especially to capture context-specific conditional independences. References: Collazo R, Gorgen C, Smith J. Chain Event Graph. CRC Press, ISBN 9781498729604, 2018 (forthcoming); and Barday LM, Collazo RA, Smith JQ, Thwaites PA, Nicholson AE. The Dynamic Chain Event Graph. Electronic Journal of Statistics, 9 (2) 2130-2169 <doi:10.1214/15-EJS1068>.
Noise in the time-series data significantly affects the accuracy of the Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression are considered here). Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the time series data into sub-series and help to improve the model performance. The models can achieve higher prediction accuracy than the traditional ML models. Two models have been provided here for time series forecasting. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
The cystiSim package provides an agent-based model for Taenia solium transmission and control. cystiSim was developed within the framework of CYSTINET, the European Network on taeniosis/cysticercosis, COST ACTION TD1302.
Check your R code for some of the most common layout flaws. Many tried to teach us how to write code less dreadful, be it implicitly as B. W. Kernighan and D. M. Ritchie (1988) <ISBN:0-13-110362-8> in The C Programming Language did, be it explicitly as R.C. Martin (2008) <ISBN:0-13-235088-2> in Clean Code: A Handbook of Agile Software Craftsmanship did. So we should check our code for files too long or wide, functions with too many lines, too wide lines, too many arguments or too many levels of nesting. Note: This is not a static code analyzer like pylint or the like. Checkout <https://cran.r-project.org/package=lintr> instead.
An end-to-end framework that enables users to implement various descriptive studies for a given set of target and outcome cohorts for data mapped to the Observational Medical Outcomes Partnership Common Data Model.
Provide step by step guided tours of Shiny applications.
This package provides a toolkit for making use of credentials mediated by Posit Connect'. It handles the details of communicating with the Connect API correctly, OAuth token caching, and refresh behaviour.
Model soil gas fluxes with the Flux-Gradient Method. It includes functions for data handling, a forward and an inverse model for flux modeling and methods for calibration and uncertainty estimation. For more details see Gartiser et al. (2025a) <doi:10.21105/joss.08094> and Gartiser et al. (2025b) <doi:10.1111/ejss.70126>.
Corbae-Ouliaris frequency domain filtering. According to Corbae and Ouliaris (2006) <doi:10.1017/CBO9781139164863.008>, this is a solution for extracting cycles from time series, like business cycles etc. when filtering. This method is valid for both stationary and non-stationary time series.
In phase I clinical trials, the primary objective is to ascertain the maximum tolerated dose (MTD) corresponding to a specified target toxicity rate. The subsequent phase II trials are designed to examine the potential efficacy of the drug based on the MTD obtained from the phase I trials, with the aim of identifying the optimal biological dose (OBD). The CFO package facilitates the implementation of dose-finding trials by utilizing calibration-free odds type (CFO-type) designs. Specifically, it encompasses the calibration-free odds (CFO) (Jin and Yin (2022) <doi:10.1177/09622802221079353>), randomized CFO (rCFO), precision CFO (pCFO), two-dimensional CFO (2dCFO) (Wang et al. (2023) <doi:10.3389/fonc.2023.1294258>), time-to-event CFO (TITE-CFO) (Jin and Yin (2023) <doi:10.1002/pst.2304>), fractional CFO (fCFO), accumulative CFO (aCFO), TITE-aCFO, and f-aCFO (Fang and Yin (2024) <doi: 10.1002/sim.10127>). It supports phase I/II trials for the CFO design and only phase I trials for the other CFO-type designs. The รข CFO package accommodates diverse CFO-type designs, allowing users to tailor the approach based on factors such as dose information inclusion, handling of late-onset toxicity, and the nature of the target drug (single-drug or drug-combination). The functionalities embedded in CFO package include the determination of the dose level for the next cohort, the selection of the MTD for a real trial, and the execution of single or multiple simulations to obtain operating characteristics. Moreover, these functions are equipped with early stopping and dose elimination rules to address safety considerations. Users have the flexibility to choose different distributions, thresholds, and cohort sizes among others for their specific needs. The output of the CFO package can be summary statistics as well as various plots for better visualization. An interactive web application for CFO is available at the provided URL.
This package provides a systematic biology tool was developed to identify cell infiltration via Individualized Cell-Cell interaction network. CITMIC first constructed a weighted cell interaction network through integrating Cell-target interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific sample, and then, it used a network propagation algorithm on the network to identify cell infiltration for the sample. Ultimately, cell infiltration in the patient dataset was obtained by normalizing the centrality scores of the cells.
This package provides tools for fitting the copCAR (Hughes, 2015) <DOI:10.1080/10618600.2014.948178> regression model for discrete areal data. Three types of estimation are supported (continuous extension, composite marginal likelihood, and distributional transform), for three types of outcomes (Bernoulli, negative binomial, and Poisson).
Computing comorbidity indices and scores such as the weighted Charlson score (Charlson, 1987 <doi:10.1016/0021-9681(87)90171-8>) and the Elixhauser comorbidity score (Elixhauser, 1998 <doi:10.1097/00005650-199801000-00004>) using ICD-9-CM or ICD-10 codes (Quan, 2005 <doi:10.1097/01.mlr.0000182534.19832.83>). Australian and Swedish modifications of the Charlson Comorbidity Index are available as well (Sundararajan, 2004 <doi:10.1016/j.jclinepi.2004.03.012> and Ludvigsson, 2021 <doi:10.2147/CLEP.S282475>), together with different weighting algorithms for both the Charlson and Elixhauser comorbidity scores.
This package performs simulation-based inference as an alternative to the delta method for obtaining valid confidence intervals and p-values for regression post-estimation quantities, such as average marginal effects and predictions at representative values. This framework for simulation-based inference is especially useful when the resulting quantity is not normally distributed and the delta method approximation fails. The methodology is described in Greifer, et al. (2025) <doi:10.32614/RJ-2024-015>. clarify is meant to replace some of the functionality of the archived package Zelig'; see the vignette "Translating Zelig to clarify" for replicating this functionality.