Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Converts customer transaction data (ID, purchase date) into a R6 class called customer. The class stores various customer analytics calculations at the customer level. The package also contains functionality to convert data in the R6 class to data.frames that can serve as inputs for various customer analytics models.
This package implements Firth's penalized maximum likelihood bias reduction method for Cox regression which has been shown to provide a solution in case of monotone likelihood (nonconvergence of likelihood function), see Heinze and Schemper (2001) and Heinze and Dunkler (2008). The program fits profile penalized likelihood confidence intervals which were proved to outperform Wald confidence intervals.
This package provides an R interface to the CVD Prevent application programming interface (API), allowing users to retrieve and analyse cardiovascular disease prevention data from primary care records across England. The Cardiovascular Disease Prevention Audit (CVDPREVENT) automatically extracts routinely held GP health data to support national reporting and improvement initiatives. See the API documentation for details: <https://bmchealthdocs.atlassian.net/wiki/spaces/CP/pages/317882369/CVDPREVENT+API+Documentation>.
Cluster Evolution Analytics allows us to use exploratory what if questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbors) to the present. See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2024) <doi:10.1016/j.softx.2024.101921>.
Color palettes for all people, including those with color vision deficiency. Popular color palette series have been organized by type and have been scored on several properties such as color-blind-friendliness and fairness (i.e. do colors stand out equally?). Own palettes can also be loaded and analysed. Besides the common palette types (categorical, sequential, and diverging) it also includes cyclic and bivariate color palettes. Furthermore, a color for missing values is assigned to each palette.
This package contains functions which can be used to calculate Pesticide Risk Metric values in aquatic environments from concentrations of multiple pesticides with known species sensitive distributions (SSDs). Pesticides provided by this package have all be validated however if the user has their own pesticides with SSD values they can append them to the pesticide_info table to include them in estimates.
Measuring cellular energetics is essential to understanding a matrixâ s (e.g. cell, tissue or biofluid) metabolic state. The Agilent Seahorse machine is a common method to measure real-time cellular energetics, but existing analysis tools are highly manual or lack functionality. The Cellular Energetics Analysis Software (ceas) R package fills this analytical gap by providing modular and automated Seahorse data analysis and visualization using the methods described by Mookerjee et al. (2017) <doi:10.1074/jbc.m116.774471>.
This package implements clustering techniques such as Proximus and Rock, utility functions for efficient computation of cross distances and data manipulation.
This package provides the "comma-free call" operator: %(%'. Use it to call a function without commas between the arguments. Just replace the ( with %(% in a function call, supply your arguments as standard R expressions enclosed by ', and be free of commas (for that call).
Implementation of cross-validation method for testing the forecasting accuracy of several multi-population mortality models. The family of multi-population includes several multi-population mortality models proposed through the actuarial and demography literature. The package includes functions for fitting and forecast the mortality rates of several populations. Additionally, we include functions for testing the forecasting accuracy of different multi-population models. References, <https://journal.r-project.org/articles/RJ-2025-018/>. Atance, D., Debon, A., and Navarro, E. (2020) <doi:10.3390/math8091550>. Bergmeir, C. & Benitez, J.M. (2012) <doi:10.1016/j.ins.2011.12.028>. Debon, A., Montes, F., & Martinez-Ruiz, F. (2011) <doi:10.1007/s13385-011-0043-z>. Lee, R.D. & Carter, L.R. (1992) <doi:10.1080/01621459.1992.10475265>. Russolillo, M., Giordano, G., & Haberman, S. (2011) <doi:10.1080/03461231003611933>. Santolino, M. (2023) <doi:10.3390/risks11100170>.
This package provides the basic functionality to interact with the Collatz conjecture. The parameterisation uses the same (P,a,b) notation as Conway's generalisations. Besides the function and reverse function, there is also functionality to retrieve the hailstone sequence, the "stopping time"/"total stopping time", or tree-graph. The only restriction placed on parameters is that both P and a can't be 0. For further reading, see <https://en.wikipedia.org/wiki/Collatz_conjecture>.
Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0). Please cite this paper: Schwarz J and Heider D, Bioinformatics 2019, 35(14):2458-2465.
This package provides simple functions to convert between color names and hexadecimal color codes using an extensive database of over 32,000 colors. Includes all 657 R built-in colors plus the comprehensive color-names database. The package supports bidirectional conversion with backward compatibility, prioritizing R colors when available.
This package provides a collection of easy-to-use functions for creating visualizations of compositional data using ggplot2'. Includes support for common plotting techniques in compositional data analysis.
Data package for the supplementary data in Prem et al. (2017) <doi:10.1371/journal.pcbi.1005697> and Prem et al. <doi:10.1371/journal.pcbi.1009098>. Provides easy access to contact data for 177 countries, for use in epidemiological, demographic or social sciences research.
This package contains an administrative-level-1 map of the world. Administrative-level-1 is the generic term for the largest sub-national subdivision of a country. This package was created for use with the choroplethr package.
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli trials. The computations uses an iterative procedure where computations are based on results from shorter series. The procedure conditions on the start value and partitions by further conditioning on the position of the first crossing (or none).
Biclustering, row clustering and column clustering using the proportional odds model (POM), ordered stereotype model (OSM) or binary model for ordinal categorical data. Fernández, D., Arnold, R., Pledger, S., Liu, I., & Costilla, R. (2019) <doi:10.1007/s11634-018-0324-3>.
Perform state and parameter inference, and forecasting, in stochastic state-space systems using the ctsmTMB class. This class, built with the R6 package, provides a user-friendly interface for defining and handling state-space models. Inference is based on maximum likelihood estimation, with derivatives efficiently computed through automatic differentiation enabled by the TMB'/'RTMB packages (Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The available inference methods include Kalman filters, in addition to a Laplace approximation-based smoothing method. For further details of these methods refer to the documentation of the CTSMR package <https://ctsm.info/ctsmr-reference.pdf> and Thygesen (2025) <doi:10.48550/arXiv.2503.21358>. Forecasting capabilities include moment predictions and stochastic path simulations, both implemented in C++ using Rcpp (Eddelbuettel et al., 2018) <doi:10.1080/00031305.2017.1375990> for computational efficiency.
Allows clustering of incomplete observations by addressing missing values using multiple imputation. For achieving this goal, the methodology consists in three steps, following Audigier and Niang 2022 <doi:10.1007/s11634-022-00519-1>. I) Missing data imputation using dedicated models. Four multiple imputation methods are proposed, two are based on joint modelling and two are fully sequential methods, as discussed in Audigier et al. (2021) <doi:10.48550/arXiv.2106.04424>. II) cluster analysis of imputed data sets. Six clustering methods are available (distances-based or model-based), but custom methods can also be easily used. III) Partition pooling. The set of partitions is aggregated using Non-negative Matrix Factorization based method. An associated instability measure is computed by bootstrap (see Fang, Y. and Wang, J., 2012 <doi:10.1016/j.csda.2011.09.003>). Among applications, this instability measure can be used to choose a number of clusters with missing values. The package also proposes several diagnostic tools to tune the number of imputed data sets, to tune the number of iterations in fully sequential imputation, to check the fit of imputation models, etc.
Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://www.epa.gov/comptox-tools/computational-toxicology-and-exposure-apis>. ctxR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.
This package provides a header only, C++ interface to R with enhancements over cpp11'. Enforces copy-on-write semantics consistent with R behavior. Offers native support for ALTREP objects, UTF-8 string handling, modern C++11 features and idioms, and reduced memory requirements. Allows for vendoring, making it useful for restricted environments. Compared to cpp11', it adds support for converting C++ maps to R lists, Roxygen documentation directly in C++ code, proper handling of matrix attributes, support for nullable external pointers, bidirectional copy of complex number types, flexibility in type conversions, use of nullable pointers, and various performance optimizations.
Although many software tools can perform meta-analyses on genetic case-control data, none of these apply to combined case-control and family-based (TDT) studies. This package conducts fixed-effects (with inverse variance weighting) and random-effects [DerSimonian and Laird (1986) <DOI:10.1016/0197-2456(86)90046-2>] meta-analyses on combined genetic data. Specifically, this package implements a fixed-effects model [Kazeem and Farrall (2005) <DOI:10.1046/j.1529-8817.2005.00156.x>] and a random-effects model [Nicodemus (2008) <DOI:10.1186/1471-2105-9-130>] for combined studies.
Create CUSUM (cumulative sum) statistics from a vector or dataframe. Also create single or faceted CUSUM control charts, with or without control limits. Accepts vector, dataframe, tibble or data.table inputs.