Tests whether multivariate ordinal data may stem from discretizing a multivariate normal distribution. The test is described by Foldnes and Grønneberg (2019) <doi:10.1080/10705511.2019.1673168>. In addition, an adjusted polychoric correlation estimator is provided that takes marginal knowledge into account, as described by Grønneberg and Foldnes (2022) <doi:10.1037/met0000495>.
Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.
This package provides a collection of utility functions for manipulating and analyzing factor vectors in R. It offers tools for filtering, splitting, combining, and reordering factor levels based on various criteria. The package is designed to simplify common tasks in categorical data analysis, making it easier to work with factors in a flexible and efficient manner.
This package provides an interface to the financial data platform <https://datahub.limex.com/>., enabling users to retrieve real-time and historical financial data. Functions within the package allow access to instruments, candlestick charts, fundamentals, news, events, models, and trading signals. Authentication is managed through user-specific API tokens, which are securely handled via environment variables.
Simulate, manage, visualize, and analyze spatially and temporally explicit datasets of mating potential. Implements methods to calculate synchrony, proximity, and compatibility.Synchrony calculations are based on methods described in Augspurger (1983) <doi:10.2307/2387650>, Kempenaers (1993) <doi:10.2307/3676415>, Ison et al. (2014) <doi:10.3732/ajb.1300065>, and variations on these, as described.
This package provides methods for extracting results from mixed-effect model objects fit with the lme4 package. Allows construction of prediction intervals efficiently from large scale linear and generalized linear mixed-effects models. This method draws from the simulation framework used in the Gelman and Hill (2007) textbook: Data Analysis Using Regression and Multilevel/Hierarchical Models.
This package contains a graphical user interface to generate the diagnostic plots proposed by Bauer (2005; <doi:10.1207/s15328007sem1204_1>), Pek & Chalmers (2015; <doi:10.1080/10705511.2014.937790>), and Pek, Chalmers, R. Kok, & Losardo (2015; <doi:10.3102/1076998615589129>) to investigate nonlinear bivariate relationships in latent regression models using structural equation mixture models (SEMMs).
Given a data matrix with rows representing data vectors and columns representing variables, produces a directed polytree for the underlying causal structure. Based on the algorithm developed in Chatterjee and Vidyasagar (2022) <arxiv:2209.07028>. The method is fully nonparametric, making no use of linearity assumptions, and especially useful when the number of variables is large.
This package provides a no-frills open-source solution for designing plot labels affixed with QR codes. It features EasyQrlabelr
', a BrAPI-compliant
shiny app that simplifies the process of plot label design for non-R users. It builds on the methods described by Wu et al. (2020) <doi:10.1111/2041-210X.13405>.
This package provides a tool for bootstrapping new packages with useful defaults, including a test suite outline that passes checks and helpers for running tests, checking test coverage, building vignettes, and more. Package skeletons it creates are set up for pushing your package to GitHub
and using other hosted services for building and test automation.
Construct various types of space-filling designs, including Latin hypercube designs, clustering-based designs, maximin designs, maximum projection designs, and uniform designs (Joseph 2016 <doi:10.1080/08982112.2015.1100447>). It also offers the option to optimize designs based on user-defined criteria. This work is supported by U.S. National Science Foundation grant DMS-2310637.
An implementation of sensitivity analysis for phylogenetic comparative methods. The package is an umbrella of statistical and graphical methods that estimate and report different types of uncertainty in PCM: (i) Species Sampling uncertainty (sample size; influential species and clades). (ii) Phylogenetic uncertainty (different topologies and/or branch lengths). (iii) Data uncertainty (intraspecific variation and measurement error).
Variants of strategy estimation (Dal Bo & Frechette, 2011, <doi:10.1257/aer.101.1.411>), including the model with parameters for the choice probabilities of the strategies (Breitmoser, 2015, <doi:10.1257/aer.20130675>), and the model with individual level covariates for the selection of strategies by individuals (Dvorak & Fehrler, 2018, <doi:10.2139/ssrn.2986445>).
Generate knockoffs for genetic data and hidden Markov models. For more information, see the website below and the accompanying papers: "Gene hunting with hidden Markov model knockoffs", Sesia et al., Biometrika, 2019, (<doi:10.1093/biomet/asy033>). "Multi-resolution localization of causal variants across the genome", Sesia et al., bioRxiv
, 2019, (<doi:10.1101/631390>).
Fit two-part regression models for zero-inflated data. The models and their components are represented using S4 classes and methods. Average Marginal effects and predictive margins with standard errors and confidence intervals can be calculated from two-part model objects. Belotti, F., Deb, P., Manning, W. G., & Norton, E. C. (2015) <doi:10.1177/1536867X1501500102>.
This package contains methods for converting standard objects constructed by bioinformatics packages, especially those in Bioconductor, and converting them to tidy
data. It thus serves as a complement to the broom
package, and follows the same tidy, augment, glance division of tidying methods. Tidying data makes it easy to recombine, reshape and visualize bioinformatics analyses.
This package provides tools to import transcript-level abundance, estimated counts and transcript lengths, and to summarize them into matrices for use with downstream gene-level analysis packages. Average transcript length, weighted by sample-specific transcript abundance estimates, is provided as a matrix which can be used as an offset for different expression of gene-level counts.
This package aims to bring the power and flexibility of AnnData
to the R ecosystem, allowing you to effortlessly manipulate and analyze your single-cell data. This package lets you work with backed h5ad and zarr files, directly access various slots (e.g. X, obs, var), or convert the data into SingleCellExperiment
and Seurat objects.
This package provides flexible parametric models for time-to-event data, including the Royston-Parmar spline model, generalized gamma and generalized F distributions. Any user-defined parametric distribution can be fitted, given at least an R function defining the probability density or hazard. There are also tools for fitting and predicting from fully parametric multi-state models.
This package provides functions to compute the asymptotic covariance matrices of mixing and unmixing matrix estimates of the following blind source separation (BSS) methods: symmetric and squared symmetric FastICA
, regular and adaptive deflation-based FastICA
, FOBI, JADE, AMUSE and deflation-based and symmetric SOBI. Also functions to estimate these covariances based on data are available.
The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed. The package is based on the work in Rebora P (2014) <doi:10.32614/RJ-2014-028>.
Uses optimal transport distances to find probabilistic matching estimators for causal inference. These methods are described in Dunipace, Eric (2021) <arXiv:2109.01991>
. The package will build the weights, estimate treatment effects, and calculate confidence intervals via the methods described in the paper. The package also supports several other methods as described in the help files.
Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015) <DOI:10.1214/14-AOAS803> , this allows flexible modeling of movement in response to covariates (or covariate gradients) with model fitting possible within a Poisson GLM framework.
In discrimination experiments candidates are sent on the same test (e.g. job, house rental) and one examines whether they receive the same outcome. The number of non negative answers are first examined in details looking for outcome differences. Then various statistics are computed. This package can also be used for analyzing the results from random experiments.