An easy way to conduct flexible scan. Monte-Carlo method is used to test the spatial clusters given the cases, population, and shapefile. A table with formal style and a map with clusters are included in the result report. The method can be referenced at: Toshiro Tango and Kunihiko Takahashi (2005) <doi:10.1186/1476-072X-4-11>.
Statistical tool set for population genetics. The package provides following functions: 1) estimators of genetic differentiation (FST), 2) regression analysis of environmental effects on genetic differentiation using generalized least squares (GLS) method, 3) interfaces to read and manipulate GENEPOP format data files). For more information, see Kitada, Nakamichi and Kishino (2020) <doi:10.1101/2020.01.30.927186>.
This package provides basic distribution functions for a generalized logistic distribution proposed by Rathie and Swamee (2006) <https://www.rroij.com/open-access/on-new-generalized-logistic-distributions-and-applicationsbarreto-fhs-mota-jma-and-rathie-pn-.pdf>. It also has an interactive RStudio plot for better guessing dynamically of initial values for ease of included optimization and simulating.
Penalized methods are useful for fitting over-parameterized models. This package includes functions for restructuring an ordinal response dataset for fitting continuation ratio models for datasets where the number of covariates exceeds the sample size or when there is collinearity among the covariates. The glmnet fitting algorithm is used to fit the continuation ratio model after data restructuring.
Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029/2019WR025122>.
This network estimation procedure eLasso
, which is based on the Ising model, combines l1-regularized logistic regression with model selection based on the Extended Bayesian Information Criterion (EBIC). EBIC is a fit measure that identifies relevant relationships between variables. The resulting network consists of variables as nodes and relevant relationships as edges. Can deal with binary data.
This package provides an R interface to the JBrowse 2 genome browser. Enables embedding a JB2 genome browser in a Shiny app or R Markdown document. The browser can also be launched from an interactive R console. The browser can be loaded with a variety of common genomics data types, and can be used with a custom theme.
Mixed, low-rank, and sparse multivariate regression ('mixedLSR
') provides tools for performing mixture regression when the coefficient matrix is low-rank and sparse. mixedLSR
allows subgroup identification by alternating optimization with simulated annealing to encourage global optimum convergence. This method is data-adaptive, automatically performing parameter selection to identify low-rank substructures in the coefficient matrix.
This package provides an interface to MetaPost
(Hobby, 1998) <http://www.tug.org/docs/metapost/mpman.pdf>. There are functions to generate an R description of a MetaPost
curve, functions to generate MetaPost
code from an R description, functions to process MetaPost
code, and functions to read solved MetaPost
paths back into R.
Generalized Least Squares (GLS) estimation of Seemingly Unrelated Regression (SUR) systems on unbalanced panel in the one/two-way cases also taking into account the possibility of cross equation restrictions. Methodological details can be found in Biørn (2004) <doi:10.1016/j.jeconom.2003.10.023> and Platoni, Sckokai, Moro (2012) <doi:10.1080/07474938.2011.607098>.
Develop spatial interaction models (SIMs). SIMs predict the amount of interaction, for example number of trips per day, between geographic entities representing trip origins and destinations. Contains functions for creating origin-destination datasets from geographic input datasets and calculating movement between origin-destination pairs with constrained, production-constrained, and attraction-constrained models (Wilson 1979) <doi:10.1068/a030001>.
This package provides a port of the Scarabee toolkit originally written as a Matlab-based application. scaRabee
provides a framework for simulation and optimization of pharmacokinetic-pharmacodynamic models at the individual and population level. It is built on top of the neldermead package, which provides the direct search algorithm proposed by Nelder and Mead for model optimization.
Takes one or more fitted Cox proportional hazards models and writes a shiny application to a directory specified by the user. The shiny application displays predicted survival curves based on user input, and contains none of the original data used to create the Cox model or models. The goal is towards visualization and presentation of predicted survival curves.
Uses parametric and nonparametric methods to quantify the proportion of the estimated selection bias (SB) explained by each observed confounder when estimating propensity score weighted treatment effects. Parast, L and Griffin, BA (2020). "Quantifying the Bias due to Observed Individual Confounders in Causal Treatment Effect Estimates". Statistics in Medicine, 39(18): 2447- 2476 <doi: 10.1002/sim.8549>.
This package provides functions for validating the structure and properties of data frames. Answers essential questions about a data set after initial import or modification. What are the unique or missing values? What columns form a primary key? What are the properties of the numeric or categorical columns? What kind of overlap or mapping exists between 2 columns?
Assess Water Quality Trends for Long-Term Monitoring Data in Estuaries using Generalized Additive Models following Wood (2017) <doi:10.1201/9781315370279> and Error Propagation with Mixed-Effects Meta-Analysis following Sera et al. (2019) <doi:10.1002/sim.8362>. Methods are available for model fitting, assessment of fit, annual and seasonal trend tests, and visualization of results.
Has various functions designed to implement the Hermite-Gaussian Radial Velocity (HGRV) estimation approach of Holzer et al. (2020) <arXiv:2005.14083>
, which is a particular application of the radial velocity method for detecting exoplanets. The overall approach consists of four sequential steps, each of which has a function in this package: (1) estimate the template spectrum with the function estimate_template()
, (2) find absorption features in the estimated template with the function findabsorptionfeatures()
, (3) fit Gaussians to the absorption features with the function Gaussfit()
, (4) apply the HGRV with simple linear regression by calling the function hgrv()
. This package is meant to be open source. But please cite the paper Holzer et al. (2020) <arXiv:2005.14083>
when publishing results that use this package.
Bayes estimation of probit choice models, both in the cross-sectional and panel setting. The package can analyze binary, multivariate, ordered, and ranked choices, as well as heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Markov chain Monte Carlo m ethods, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating heuristic. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method see Oelschlaeger and Bauer (2021) <https://trid.trb.org/view/1759753>.
Automated Characterization of Health Information at Large-Scale Longitudinal Evidence Systems. Creates a descriptive statistics summary for an Observational Medical Outcomes Partnership Common Data Model standardized data source. This package includes functions for executing summary queries on the specified data source and exporting reporting content for use across a variety of Observational Health Data Sciences and Informatics community applications.
Currently, the package provides several functions for plotting and analyzing bibliometric data (JIF, Journal Impact Factor, and paper percentile values), beamplots with citations and percentiles, and three plot functions to visualize the result of a reference publication year spectroscopy (RPYS) analysis performed in the free software CRExplorer (see <http://crexplorer.net>). Further extension to more plot variants is planned.
This package provides an extension to the purrr family of mapping functions to apply a function to each combination of elements in a list of inputs. Also includes functions for automatically detecting output type in mapping functions, finding every combination of elements of lists or rows of data frames, and applying multiple models to multiple subsets of a dataset.
Quantify and visualise various measures of chemical diversity and dissimilarity, for phytochemical compounds and other sets of chemical composition data. Importantly, these measures can incorporate biosynthetic and/or structural properties of the chemical compounds, resulting in a more comprehensive quantification of diversity and dissimilarity. For details, see Petrén, Köllner and Junker (2023) <doi:10.1111/nph.18685>.
Computes density function, cumulative distribution function, quantile function and random numbers for a multisection composite distribution specified by the user. Also fits the user specified distribution to a given data set. More details of the package can be found in the following paper submitted to the R journal Wiegand M and Nadarajah S (2017) CompDist
: Multisection composite distributions.
The congeneric normal-ogive model is a popular model for psychometric data (McDonald
, R. P. (1997) <doi:10.1007/978-1-4757-2691-6_15>). This model estimates the model, calculates theoretical and concrete reliability coefficients, and predicts the latent variable of the model. This is the companion package to Moss (2020) <doi:10.31234/osf.io/nvg5d>.