Write executable specifications in a natural language that describes how your code should behave. Write specifications in feature files using Gherkin language and execute them using functions implemented in R. Use them as an extension to your testthat tests to provide a high level description of how your code works.
Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.
Two classifiers for open set recognition and novelty detection based on extreme value theory. The first classifier is based on the generalized Pareto distribution (GPD) and the second classifier is based on the generalized extreme value (GEV) distribution. For details, see Vignotto, E., & Engelke, S. (2018) <arXiv:1808.09902>.
Set of functions to keep track and find objects in user-defined environments by identifying environments by name --which cannot be retrieved with the built-in function environmentName(). The package also provides functionality to obtain simplified information about function calling chains and to get an object's memory address.
Designed to streamline the process of analyzing genotyping data from Fluidigm machines, this package offers a suite of tools for data handling and analysis. It includes functions for converting Fluidigm data to format used by PLINK', estimating errors, calculating pairwise similarities, determining pairwise similarity loci, and generating a similarity matrix.
The Food and Agriculture Organization of the United Nations (FAO) FishStat database is the leading source of global fishery and aquaculture statistics and provides unique information for sector analysis and monitoring. This package provides the global production data from all fisheries and aquaculture in R format, ready for analysis.
We define generalized multipartite networks as the joint observation of several networks implying some common pre-specified groups of individuals. The aim is to fit an adapted version of the popular stochastic block model to multipartite networks, as described in Bar-hen, Barbillon and Donnet (2020) <arXiv:1807.10138>.
Facilitates the citation of R packages used in analysis projects. Scans project for packages used, gets their citations, and produces a document with citations in the preferred bibliography format, ready to be pasted into reports or manuscripts. Alternatively, grateful can be used directly within an R Markdown or Quarto document.
This package provides a fast, vectorized hashmap that is built on top of C++ std::unordered_map <https://en.cppreference.com/w/cpp/container/unordered_map.html>. The map can hold any R object as key / value as long as it is serializable and supports vectorized insertion, lookup, and deletion.
Core set of low-level utilities common across the hubverse'. Used to interact with hubverse schema, Hub configuration files and model outputs and designed to be primarily used internally by other hubverse packages. See Reich et al. (2022) <doi:10.2105/AJPH.2022.306831> for an overview of Collaborative Hubs.
Create publication-quality, 2-dimensional visualizations of alpha-helical peptide sequences. Specifically, allows the user to programmatically generate helical wheels and wenxiang diagrams to provide a bird's eye, top-down view of alpha-helical oligopeptides. See Wadhwa RR, et al. (2018) <doi:10.21105/joss.01008> for more information.
Wait for a single key press at the R prompt. This works in terminals, but does not currently work in the Windows GUI', the OS X GUI ('R.app'), in Emacs ESS', in an Emacs shell buffer or in R Studio'. In these cases keypress stops with an error message.
Constructs tree for continuous longitudinal data and survival data using baseline covariates as partitioning variables according to the LongCART and SurvCART algorithm, respectively. Later also included functions to calculate conditional power and predictive power of success based on interim results and probability of success for a prospective trial.
This package performs Bayesian meta-analysis, meta-regression and model-based meta-analysis using Stan'. Includes binomial-normal hierarchical models and option to use weakly informative priors for the heterogeneity parameter and the treatment effect parameter which are described in Guenhan, Roever, and Friede (2020) <doi:10.1002/jrsm.1370>.
This package provides functions, which make matrix creation conciser (such as the core package's function m() for rowwise matrix definition or runifm() for random value matrices). Allows to set multiple matrix values at once, by using list of formulae. Provides additional matrix operators and dedicated plotting function.
This package provides a system for testing differential effects among treatments in case of Randomised Block Design and Latin Square Design when there is one missing observation. Methods for this process are as described in A.M.Gun,M.K.Gupta and B.Dasgupta(2019,ISBN:81-87567-81-3).
Given any graph, the node2vec algorithm can learn continuous feature representations for the nodes, which can then be used for various downstream machine learning tasks.The techniques are detailed in the paper "node2vec: Scalable Feature Learning for Networks" by Aditya Grover, Jure Leskovec(2016),available at <arXiv:1607.00653>.
This package provides a computational toolkit for analyzing nematode communities in ecological studies. Includes methods to quantify nematode-based ecological indicators such as metabolic footprints, energy flow metrics, and community structure. These tools support assessments of soil health, ecosystem functioning, and trophic interactions, standardizing the use of nematodes as bioindicators.
Analyses of OTU tables produced by 16S rRNA gene amplicon sequencing, as well as example data. It contains the data and scripts used in the paper Linz, et al. (2017) "Bacterial community composition and dynamics spanning five years in freshwater bog lakes," <doi: 10.1128/mSphere.00169-17>.
This package provides tools for downloading, reading and analyzing the National Survey of Demographic and Health - PNDS, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website <https://www.ibge.gov.br/>. Further analysis must be made using package survey'.
Estimates correlation coefficients with associated confidence limits for bivariate, partially censored survival times. Uses the iterative multiple imputation approach proposed by Schemper, Kaider, Wakounig and Heinze (2013) <doi:10.1002/sim.5874>. Provides a scatterplot function to visualize the bivariate distribution, either on the original time scale or as copula.
This package provides tools to simulate realistic raw case data for an epidemic in the form of line lists and contacts using a branching process. Simulated outbreaks are parameterised with epidemiological parameters and can have age-structured populations, age-stratified hospitalisation and death risk and time-varying case fatality risk.
An accurate and easy tool for performing linear trajectory inference on single cells using single-cell RNA sequencing data. In addition, SCORPIUS provides functions for discovering the most important genes with respect to the reconstructed trajectory, as well as nice visualisation tools. Cannoodt et al. (2016) <doi:10.1101/079509>.
Companion package that supports the surveydown survey platform (<https://surveydown.org>). The default method for working with a surveydown survey is to edit the plain text survey.qmd and app.R files. With sdstudio', you can create, preview and manage surveys with a shiny application as a graphical user interface.