Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a time series usually does not have a uniform growth rate. Compound Annual Growth Rate measures the average annual growth over a given period. More details can be found in Bardhan et al. (2022) <DOI:10.18805/ag.D-5418>.
This package provides tools for crop breeding analysis including Genetic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV), heritability, genetic advance calculations, stability analysis using the Eberhart-Russell model, two-way ANOVA for genotype-environment interactions, and Additive Main Effects and Multiplicative Interaction (AMMI) analysis. These tools are developed for crop breeding research and stability evaluation under various environmental conditions. The methods are based on established statistical and biometrical principles. Refer to Eberhart and Russell (1966) <doi:10.2135/cropsci1966.0011183X000600010011x> for stability parameters, Fisher (1935) "The Design of Experiments" <ISBN:9780198522294>, Falconer (1996) "Introduction to Quantitative Genetics" <ISBN:9780582243026>, and Singh and Chaudhary (1985) "Biometrical Methods in Quantitative Genetic Analysis" <ISBN:9788122433764> for foundational methodologies.
Calculate the distribution of costs for the installation of an elevator based on the different distribution rules.
This package implements non-parametric analyses for clustered binary and multinomial data. The elements of the cluster are assumed exchangeable, and identical joint distribution (also known as marginal compatibility, or reproducibility) is assumed for clusters of different sizes. A trend test based on stochastic ordering is implemented. Szabo A, George EO. (2010) <doi:10.1093/biomet/asp077>; George EO, Cheon K, Yuan Y, Szabo A (2016) <doi:10.1093/biomet/asw009>.
This package provides a fast way to loop a character vector or file names as a menu in the console for the user to choose an option.
The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). chillR contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. chillR also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, chillR contains a function for interpolating hourly temperature records.
Convert text into synthesized speech and get a list of supported voices for a region. Microsoft's Cognitive Services Text to Speech REST API <https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/rest-text-to-speech?tabs=streaming> supports neural text to speech voices, which support specific languages and dialects that are identified by locale.
Analysis of network community objects with applications to neuroimaging data. There are two main components to this package. The first is the hierarchical multimodal spinglass (HMS) algorithm, which is a novel community detection algorithm specifically tailored to the unique issues within brain connectivity. The other is a suite of semiparametric kernel machine methods that allow for statistical inference to be performed to test for potential associations between these community structures and an outcome of interest (binary or continuous).
Non-parametric test for equality of multivariate distributions. Trains a classifier to classify (multivariate) observations as coming from one of several distributions. If the classifier is able to classify the observations better than would be expected by chance (using permutation inference), then the null hypothesis that the distributions are equal is rejected.
This package provides tools to process and analyze chest expansion using 3D marker data from motion capture systems. Includes functions for data processing, marker position adjustment, volume calculation using convex hulls, and visualization in 2D and 3D. Barber et al. (1996) <doi:10.1145/235815.235821>. TAMIYA Hiroyuki et al. (2021) <doi:10.1038/s41598-021-01033-8>.
Computing, comparing, and demonstrating top informative centrality measures within a network. "CINNA: an R/CRAN package to decipher Central Informative Nodes in Network Analysis" provides a comprehensive overview of the package functionality Ashtiani et al. (2018) <doi:10.1093/bioinformatics/bty819>.
Flexible univariate count models based on renewal processes. The models may include covariates and can be specified with familiar formula syntax as in glm() and package flexsurv'. The methodology is described by Kharrat et all (2019) <doi:10.18637/jss.v090.i13> (included as vignette Countr_guide in the package).
The issue of overlapping regions in multidimensional data arises when different classes or clusters share similar feature representations, making it challenging to delineate distinct boundaries between them accurately. This package provides methods for detecting and visualizing these overlapping regions using partitional clustering techniques based on nearest neighbor distances.
This package provides a Bayesian method for Phenome-wide association studies (PheWAS) that identifies causal associations between genetic variants and traits, while simultaneously addressing confounding due to linkage disequilibrium. For details see Manipur et al (2024, Nature Communications) <doi:10.1038/s41467-024-49990-8>.
Makes univariate, multivariate, or random fields simulations precise and simple. Just select the desired time series or random fieldsâ properties and it will do the rest. CoSMoS is based on the framework described in Papalexiou (2018, <doi:10.1016/j.advwatres.2018.02.013>), extended for random fields in Papalexiou and Serinaldi (2020, <doi:10.1029/2019WR026331>), and further advanced in Papalexiou et al. (2021, <doi:10.1029/2020WR029466>) to allow fine-scale space-time simulation of storms (or even cyclone-mimicking fields).
This package provides a set of tools for evaluating clustering robustness using proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014) <doi:10.1038/srep06207>), as well as similarity across methods and method stability using element-centric clustering comparison (Gates et al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package enables stability-based parameter assessment for graph-based clustering pipelines typical in single-cell data analysis.
Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://api-ccte.epa.gov/docs/>. ccdR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.
This package provides function declarations and inline function definitions that facilitate communication between R and the Armadillo C++ library for linear algebra and scientific computing. This implementation is detailed in Vargas Sepulveda and Schneider Malamud (2024) <doi:10.1016/j.softx.2025.102087>.
Merging data from multiple sources is a relevant approach for comprehensively evaluating complex systems. However, the inherent problems encountered when analyzing single tables are amplified with the generation of multi-block datasets, and finding the relationships between data layers of increasing complexity constitutes a challenging task. For that purpose, a generic methodology is proposed by combining the strength of established data analysis strategies, i.e. multi-block approaches and the Orthogonal Partial Least Squares (OPLS) framework to provide an efficient tool for the fusion of data obtained from multiple sources. The package enables quick and efficient implementation of the consensus OPLS model for any horizontal multi-block data structures (observation-based matching). Moreover, it offers an interesting range of metrics and graphics to help to determine the optimal number of components and check the validity of the model through permutation tests. Interpretation tools include score and loading plots, Variable Importance in Projection (VIP), functionality predict for SHAP computing, and performance coefficients such as R2, Q2, and DQ2 coefficients. J. Boccard and D.N. Rutledge (2013) <doi:10.1016/j.aca.2013.01.022>.
This package contains functions to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve and the optimal cutoff point for the right and interval censored survival data. See Beyene and El Ghouch (2020)<doi:10.1002/sim.8671> and Beyene and El Ghouch (2022) <doi:10.1002/bimj.202000382>.
This package provides useful tools for cognitive diagnosis modeling (CDM). The package includes functions for empirical Q-matrix estimation and validation, such as the Hull method (Nájera, Sorrel, de la Torre, & Abad, 2021, <doi:10.1111/bmsp.12228>) and the discrete factor loading method (Wang, Song, & Ding, 2018, <doi:10.1007/978-3-319-77249-3_29>). It also contains dimensionality assessment procedures for CDM, including parallel analysis and automated fit comparison as explored in Nájera, Abad, and Sorrel (2021, <doi:10.3389/fpsyg.2021.614470>). Other relevant methods and features for CDM applications, such as the restricted DINA model (Nájera et al., 2023; <doi:10.3102/10769986231158829>), the general nonparametric classification method (Chiu et al., 2018; <doi:10.1007/s11336-017-9595-4>), and corrected estimation of the classification accuracy via multiple imputation (Kreitchmann et al., 2022; <doi:10.3758/s13428-022-01967-5>) are also available. Lastly, the package provides some useful functions for CDM simulation studies, such as random Q-matrix generation and detection of complete/identified Q-matrices.
Under natural conditions, nest temperatures fluctuate daily around a mean value, whereas in captivity they are often held constant. The Constant Temperature Equivalent is designed to bridge the gap between the two by calculating a single temperature value for wild nests that corresponds with the amount of development that would occur in an incubator set to the same temperature. The theory and formulas behind this method were developed by Professor Author Georges and are implemented here as a single function.
Nonparametric rank based tests (rank-sum tests and signed-rank tests) for clustered data, especially useful for clusters having informative cluster size and intra-cluster group size.
We provide a computationally efficient and robust implementation of the recently proposed C-JAMP (Copula-based Joint Analysis of Multiple Phenotypes) method (Konigorski et al., 2019, submitted). C-JAMP allows estimating and testing the association of one or multiple predictors on multiple outcomes in a joint model, and is implemented here with a focus on large-scale genome-wide association studies with two phenotypes. The use of copula functions allows modeling a wide range of multivariate dependencies between the phenotypes, and previous results are supporting that C-JAMP can increase the power of association studies to identify associated genetic variants in comparison to existing methods (Konigorski, Yilmaz, Pischon, 2016, <DOI:10.1186/s12919-016-0045-6>; Konigorski, Yilmaz, Bull, 2014, <DOI:10.1186/1753-6561-8-S1-S72>). In addition to the C-JAMP functions, functions are available to generate genetic and phenotypic data, to compute the minor allele frequency (MAF) of genetic markers, and to estimate the phenotypic variance explained by genetic markers.