Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
API client for ClimMob', an open source software for decentralized large-N trials with the tricot approach <https://climmob.net/>. Developed by van Etten et al. (2019) <doi:10.1017/S0014479716000739>, it turns the research paradigm on its head; instead of a few researchers designing complicated trials to compare several technologies in search of the best solutions for the target environment, it enables many participants to carry out reasonably simple experiments that taken together can offer even more information. ClimMobTools enables project managers to deep explore and analyse their ClimMob data in R.
Providing a cluster allocation for n samples, either with an $n \times p$ data matrix or an $n \times n$ distance matrix, a bootstrap procedure is performed. The proportion of bootstrap replicates where a pair of samples cluster in the same cluster indicates who tightly the samples in a particular cluster clusters together.
Count transformation models featuring parameters interpretable as discrete hazard ratios, odds ratios, reverse-time discrete hazard ratios, or transformed expectations. An appropriate data transformation for a count outcome and regression coefficients are simultaneously estimated by maximising the exact discrete log-likelihood using the computational framework provided in package mlt', technical details are given in Siegfried & Hothorn (2020) <DOI:10.1111/2041-210X.13383>. The package also contains an experimental implementation of multivariate count transformation models with an application to multi-species distribution models <DOI:10.48550/arXiv.2201.13095>.
This package provides functions for evaluating and visualizing predictive model performance (specifically: binary classifiers) in the field of customer scoring. These metrics include lift, lift index, gain percentage, top-decile lift, F1-score, expected misclassification cost and absolute misclassification cost. See Berry & Linoff (2004, ISBN:0-471-47064-3), Witten and Frank (2005, 0-12-088407-0) and Blattberg, Kim & Neslin (2008, ISBN:978â 0â 387â 72578â 9) for details. Visualization functions are included for lift charts and gain percentage charts. All metrics that require class predictions offer the possibility to dynamically determine cutoff values for transforming real-valued probability predictions into class predictions.
This package provides functions for calculating the OPTICS Cordillera. The OPTICS Cordillera measures the amount of clusteredness in a numeric data matrix within a distance-density based framework for a given minimum number of points comprising a cluster, as described in Rusch, Hornik, Mair (2018) <doi:10.1080/10618600.2017.1349664>. We provide an R native version with methods for printing, summarizing, and plotting the result.
Implement various chromosomal instability metrics. CINmetrics (Chromosomal INstability metrics) provides functions to calculate various chromosomal instability metrics on masked Copy Number Variation(CNV) data at individual sample level. The chromosomal instability metrics have been implemented as described in the following studies: Baumbusch LO et al. 2013 <doi:10.1371/journal.pone.0054356>, Davidson JM et al. 2014 <doi:10.1371/journal.pone.0079079>, Chin SF et al. 2007 <doi:10.1186/gb-2007-8-10-r215>.
Subset and download data from EU Copernicus Climate Data Service: <https://cds.climate.copernicus.eu/>. Import information about the Earth's past, present and future climate from Copernicus into R without the need of external software.
This package provides fast, easy feature extraction of human speech and model estimation with hidden Markov models. Flexible extraction of phonetic features and their derivatives, with necessary preprocessing options like feature standardization. Communication can estimate supervised and unsupervised hidden Markov models with these features, with cross validation and corrections for auto-correlation in features. Methods developed in Knox and Lucas (2021) <doi:10.7910/DVN.8BTOHQ>.
Downloads USDA National Agricultural Statistics Service (NASS) cropscape data for a specified state. Utilities for fips, abbreviation, and name conversion are also provided. Full functionality requires an internet connection, but data sets can be cached for later off-line use.
This creates code names that a user can consider for their organizations, their projects, themselves, people in their organizations or projects, or whatever else. The user can also supply a numeric seed (and even a character seed) for maximum reproducibility. Use is simple and the code names produced come in various types too, contingent on what the user may be desiring as a code name or nickname.
This package provides a minimal interface for applying annotators from the Stanford CoreNLP java library. Methods are provided for tasks such as tokenisation, part of speech tagging, lemmatisation, named entity recognition, coreference detection and sentiment analysis.
Cointegration methods are widely used in empirical macroeconomics and empirical finance. It is well known that in a cointegrating regression the ordinary least squares (OLS) estimator of the parameters is super-consistent, i.e. converges at rate equal to the sample size T. When the regressors are endogenous, the limiting distribution of the OLS estimator is contaminated by so-called second order bias terms, see e.g. Phillips and Hansen (1990) <DOI:10.2307/2297545>. The presence of these bias terms renders inference difficult. Consequently, several modifications to OLS that lead to zero mean Gaussian mixture limiting distributions have been proposed, which in turn make standard asymptotic inference feasible. These methods include the fully modified OLS (FM-OLS) approach of Phillips and Hansen (1990) <DOI:10.2307/2297545>, the dynamic OLS (D-OLS) approach of Phillips and Loretan (1991) <DOI:10.2307/2298004>, Saikkonen (1991) <DOI:10.1017/S0266466600004217> and Stock and Watson (1993) <DOI:10.2307/2951763> and the new estimation approach called integrated modified OLS (IM-OLS) of Vogelsang and Wagner (2014) <DOI:10.1016/j.jeconom.2013.10.015>. The latter is based on an augmented partial sum (integration) transformation of the regression model. IM-OLS is similar in spirit to the FM- and D-OLS approaches, with the key difference that it does not require estimation of long run variance matrices and avoids the need to choose tuning parameters (kernels, bandwidths, lags). However, inference does require that a long run variance be scaled out. This package provides functions for the parameter estimation and inference with all three modified OLS approaches. That includes the automatic bandwidth selection approaches of Andrews (1991) <DOI:10.2307/2938229> and of Newey and West (1994) <DOI:10.2307/2297912> as well as the calculation of the long run variance.
Utilize the shiny interface for visualizing results from a pyDarwin (<https://certara.github.io/pyDarwin/>) machine learning pharmacometric model search. It generates Goodness-of-Fit plots and summary tables for selected models, allowing users to customize diagnostic outputs within the interface. The underlying R code for generating plots and tables can be extracted for use outside the interactive session. Model diagnostics can also be incorporated into an R Markdown document and rendered in various output formats.
This package provides a unified interface for simplifying cloud storage interactions, including uploading, downloading, reading, and writing files, with functions for both Google Drive (<https://www.google.com/drive/>) and Amazon S3 (<https://aws.amazon.com/s3/>).
Based on fishery Catch Dynamics instead of fish Population Dynamics (hence CatDyn) and using high-frequency or medium-frequency catch in biomass or numbers, fishing nominal effort, and mean fish body weight by time step, from one or two fishing fleets, estimate stock abundance, natural mortality rate, and fishing operational parameters. It includes methods for data organization, plotting standard exploratory and analytical plots, predictions, for 100 types of models of increasing complexity, and 72 likelihood models for the data.
This package provides a collection of functions for exploratory chemometrics of 2D spectroscopic data sets such as COSY (correlated spectroscopy) and HSQC (heteronuclear single quantum coherence) 2D NMR (nuclear magnetic resonance) spectra. ChemoSpec2D deploys methods aimed primarily at classification of samples and the identification of spectral features which are important in distinguishing samples from each other. Each 2D spectrum (a matrix) is treated as the unit of observation, and thus the physical sample in the spectrometer corresponds to the sample from a statistical perspective. In addition to chemometric tools, a few tools are provided for plotting 2D spectra, but these are not intended to replace the functionality typically available on the spectrometer. ChemoSpec2D takes many of its cues from ChemoSpec and tries to create consistent graphical output and to be very user friendly.
Calculates the chilling and heat accumulation for studies of the temperate fruit trees. The models in this package are: Utah (Richardson et al., 1974, ISSN:0018-5345), Positive Chill Units - PCU (Linsley-Noaks et al., 1995, ISSN:1017-0316), GDH-A - Growing Degree Hours by Anderson et al.(1986, ISSN:0567-7572), GDH-R - Growing Degree Hours by Richardson et al.(1975, ISSN:0018-5345), North Carolina (Shaltout e Unrath, 1983, ISSN:0003-1062), Landsberg Model (Landsberg, 1974, ISSN:0305-7364), Q10 Model (Bidabe, 1967, ISSN:0031-9368), Jones Model (Jones et al., 2013 <DOI:10.1111/j.1438-8677.2012.00590.x>), Low-Chill Model (Gilreath and Buchanan, 1981, ISSN:0003-1062), Model for Cherry "Sweetheart" (Guak and Nielsen, 2013 <DOI:10.1007/s13580-013-0140-9>), Model for apple "Gala" (Guak and Nielsen, 2013 <DOI:10.1007/s13580-013-0140-9>), Taiwan Model (Lu et al., 2012 <DOI:10.17660/ActaHortic.2012.962.35>), Dynamic Model (Fishman et al., 1987, ISSN:0022-5193) adapted from the function Dynamic_Model() of the chillR package (Luedeling, 2018), Unified Model (Chuine et al., 2016 <DOI:10.1111/gcb.13383>) and Heat Restriction model.
This package performs simulation-based inference as an alternative to the delta method for obtaining valid confidence intervals and p-values for regression post-estimation quantities, such as average marginal effects and predictions at representative values. This framework for simulation-based inference is especially useful when the resulting quantity is not normally distributed and the delta method approximation fails. The methodology is described in Greifer, et al. (2025) <doi:10.32614/RJ-2024-015>. clarify is meant to replace some of the functionality of the archived package Zelig'; see the vignette "Translating Zelig to clarify" for replicating this functionality.
Predict the course of clinical trial with a time-to-event endpoint for both two-arm and single-arm design. Each of the four primary study design parameters (the expected number of observed events, the number of subjects enrolled, the observation time, and the censoring parameter) can be derived analytically given the other three parameters. And the simulation datasets can be generated based on the design settings.
This package provides a high performance package estimating Cox Model when an even has more than one causes. It also supports random and fixed effects, tied events, and time-varying variables.
The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The cmsaf R-package includes a shiny based interface for an easy application of the cmsafops and cmsafvis packages - the CM SAF R Toolbox. The Toolbox offers an easy way to prepare, manipulate, analyse and visualize CM SAF NetCDF formatted data. Other CF conform NetCDF data with time, longitude and latitude dimension should be applicable, but there is no guarantee for an error-free application. CM SAF climate data records are provided for free via (<https://wui.cmsaf.eu/safira>). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>).
Monitor and trace changes in clustering solutions of accumulating datasets at successive time points. The clusters can adopt External and Internal transition at succeeding time points. The External transitions comprise of Survived, Merged, Split, Disappeared, and newly Emerged candidates. In contrast, Internal transition includes changes in location and cohesion of the survived clusters. The package uses MONIC framework developed by Spiliopoulou, Ntoutsi, Theodoridis, and Schult (2006)<doi:10.1145/1150402.1150491> .
Statistical tests for the comparison between two correlations based on either independent or dependent groups. Dependent correlations can either be overlapping or nonoverlapping. A web interface is available on the website <http://comparingcorrelations.org>. A plugin for the R GUI and IDE RKWard is included. Please install RKWard from <https://rkward.kde.org> to use this feature. The respective R package rkward cannot be installed directly from a repository, as it is a part of RKWard.
Cronbach's alpha and McDonald's omega are widely used reliability or internal consistency measures in social, behavioral and education sciences. Alpha is reported in nearly every study that involves measuring a construct through multiple test items. The package coefficientalpha calculates coefficient alpha and coefficient omega with missing data and non-normal data. Robust standard errors and confidence intervals are also provided. A test is also available to test the tau-equivalent and homogeneous assumptions. Since Version 0.5, the bootstrap confidence intervals were added.