Analysis of historical non-decimal currencies and value systems that use tripartite or tetrapartite systems such as pounds, shillings, and pence. It introduces new vector classes to represent non-decimal currencies, making them compatible with numeric classes, and provides functions to work with these classes in data frames in the context of double-entry bookkeeping.
Spatial downscaling of coarse grid mapping to fine grid mapping using predictive covariates and a model fitted using the caret package. The original dissever algorithm was published by Malone et al. (2012) <doi:10.1016/j.cageo.2011.08.021>, and extended by Roudier et al. (2017) <doi:10.1016/j.compag.2017.08.021>.
Function to create forest plots. Functions to use posterior samples from Bayesian bivariate meta-analysis model, Bayesian hierarchical summary receiver operating characteristic (HSROC) meta-analysis model or Bayesian latent class (LC) meta-analysis model to create Summary Receiver Operating Characteristic (SROC) plots using methods described by Harbord et al (2007)<doi:10.1093/biostatistics/kxl004>.
This package provides tools for describing parameters of algorithms in an abstract way. Description can include an id, a description, a domain (range or list of values), and a default value. dynparam can also convert parameter sets to a ParamHelpers format, in order to be able to use dynparam in conjunction with mlrMBO'.
An implementation of 1) the tail pairwise dependence matrix (TPDM) as described in Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1> 2) the extremal pattern index (EPI) as described in Szemkus & Friederichs ('Spatial patterns and indices for heatwave and droughts over Europe using a decomposition of extremal dependency'; submitted to ASCMO 2023).
Maximum Likelihood Estimation of Stochastic Frontier Production and Cost Functions. Two specifications are available: the error components specification with time-varying efficiencies (Battese and Coelli, 1992, <doi:10.1007/BF00158774>) and a model specification in which the firm effects are directly influenced by a number of variables (Battese and Coelli, 1995, <doi:10.1007/BF01205442>).
Statistical methods and simulation tools for the interpretation of forensic DNA mixtures. The methods implemented are described in Haned et al. (2011) <doi:10.1111/j.1556-4029.2010.01550.x>, Haned et al. (2012) <doi:10.1016/j.fsigen.2012.11.002> and Gill & Haned (2013) <doi:10.1016/j.fsigen.2012.08.008>.
This package contains Probability Mass Functions, Cumulative Mass Functions, Negative Log Likelihood value, parameter estimation and modeling data using Binomial Mixture Distributions (BMD) (Manoj et al (2013) <doi:10.5539/ijsp.v2n2p24>) and Alternate Binomial Distributions (ABD) (Paul (1985) <doi:10.1080/03610928508828990>), also Journal article to use the package(<doi:10.21105/joss.01505>).
Automates the identification and comparative evaluation of item-removal strategies in exploratory factor analysis, producing transparent summaries (explained variance, loading ranges, reliability) to support comfortable, reproducible decisions. The criteria are based on best practices and established heuristics (e.g., Costello & Osborne (2005) <doi:10.7275/jyj1-4868>, Howard (2016) <doi:10.1080/10447318.2015.1087664>).
This package implements continuous-time hidden Markov models (HMMs) to infer identity-by-descent (IBD) segments shared by two individuals from their single-nucleotide polymorphism (SNP) genotypes. Provides posterior probabilities at each marker (forward-backward algorithm), prediction of IBD segments (Viterbi algorithm), and functions for visualising results. Supports both autosomal data and X-chromosomal data.
Takes an R expression and returns a job object with a $stop() method which can be called to terminate the background job. Also provides timeouts and other mechanisms for automatically terminating a background job. The result of the expression is available synchronously via $result or asynchronously with callbacks or through the promises package framework.
The knockoff filter is a general procedure for controlling the false discovery rate (FDR) when performing variable selection. For more information, see the website below and the accompanying paper: Candes et al., "Panning for gold: model-X knockoffs for high-dimensional controlled variable selection", J. R. Statist. Soc. B (2018) 80, 3, pp. 551-577.
Linear dimension reduction subspaces can be uniquely defined using orthogonal projection matrices. This package provides tools to compute distances between such subspaces and to compute the average subspace. For details see Liski, E.Nordhausen K., Oja H., Ruiz-Gazen A. (2016) Combining Linear Dimension Reduction Subspaces <doi:10.1007/978-81-322-3643-6_7>.
An implementation of the Nonparametric Predictive Inference approach in R. It provides tools for quantifying uncertainty via lower and upper probabilities. It includes useful functions for pairwise and multiple comparisons: comparing two groups with and without terminated tails, selecting the best group, selecting the subset of best groups, selecting the subset including the best group.
The implementation to perform the geometric spatial point analysis developed in Hernández & Solàs (2022) <doi:10.1007/s00180-022-01244-1>. It estimates the geometric goodness-of-fit index for a set of variables against a response one based on the sf package. The package has methods to print and plot the results.
Projection pursuit is used to find interesting low-dimensional projections of high-dimensional data by optimizing an index over all possible projections. The spinebil package contains methods to evaluate the performance of projection pursuit index functions using tour methods. A paper describing the methods can be found at <doi:10.1007/s00180-020-00954-8>.
Standard error adjusted adaptive lasso (SEA-lasso) is a version of the adaptive lasso, which incorporates OLS standard error to the L1 penalty weight. This method is intended for variable selection under linear regression settings (n > p). This new weight assignment strategy is especially useful when the collinearity of the design matrix is a concern.
Sensitivity analysis in unmatched observational studies, with or without strata. The main functions are sen2sample() and senstrat(). See Rosenbaum, P. R. and Krieger, A. M. (1990), JASA, 85, 493-498, <doi:10.1080/01621459.1990.10476226> and Gastwirth, Krieger and Rosenbaum (2000), JRSS-B, 62, 545â 555 <doi:10.1111/1467-9868.00249> .
Datasets detailing the results, castaways, and events of each season of Survivor for the US, Australia, South Africa, New Zealand, and the UK. This includes details on the cast, voting history, immunity and reward challenges, jury votes, boot order, advantage details, and episode ratings. Use this for analysis of trends and statistics of the game.
Inference on panel data using spatiotemporal partially-observed Markov process (SpatPOMP) models. The spatPomp package extends pomp to include algorithms taking advantage of the spatial structure in order to assist with handling high dimensional processes. See Asfaw et al. (2024) <doi:10.48550/arXiv.2101.01157> for further description of the package.
This package provides a dynamic timer control (DTC) is a shiny widget that enables time-based processes in applications. It allows users to execute these processes manually in individual steps or at customizable speeds. The timer can be paused, resumed, or restarted. This control is particularly well-suited for simulations, animations, countdowns, or interactive visualizations.
Improves the predictive performance of ridge and lasso regression exploiting one or more sources of prior information on the importance and direction of effects (Rauschenberger and others 2023, <doi:10.1093/bioinformatics/btad680>). For running the vignette (optional), install fwelnet and ecpc from <https://github.com/kjytay/fwelnet> and <https://github.com/Mirrelijn/ecpc>, respectively.
Bayes estimation of probit choice models in cross-sectional and panel settings. The package can analyze binary, multivariate, ordered, and ranked choices, as well as heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Gibbs sampling, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating heuristic. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method, see Oelschlaeger and Bauer (2021) <https://trid.trb.org/view/1759753>.
Computes a variety of statistics for relational event models. Relational event models enable researchers to investigate both exogenous and endogenous factors influencing the evolution of a time-ordered sequence of events. These models are categorized into tie-oriented models (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>), where the probability of a dyad interacting next is modeled in a single step, and actor-oriented models (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>), which first model the probability of a sender initiating an interaction and subsequently the probability of the sender's choice of receiver. The package is designed to compute a variety of statistics that summarize exogenous and endogenous influences on the event stream for both types of models.