This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.
Bayesian Network Structure Learning from Data with Missing Values. The package implements the Silander-Myllymaki complete search, the Max-Min Parents-and-Children, the Hill-Climbing, the Max-Min Hill-climbing heuristic searches, and the Structural Expectation-Maximization algorithm. Available scoring functions are BDeu, AIC, BIC. The package also implements methods for generating and using bootstrap samples, imputed data, inference.
This package provides statistical tools for Bayesian estimation of mixture distributions, mainly a mixture of Gamma, Normal, and t-distributions. The package is implemented based on the Bayesian literature for the finite mixture of distributions, including Mohammadi and et al. (2013) <doi:10.1007/s00180-012-0323-3> and Mohammadi and Salehi-Rad (2012) <doi:10.1080/03610918.2011.588358>.
Many correlation coefficient related functions are offered, such as correlations, partial correlations and hypothesis testing using asymptotic tests and computer intensive methods (bootstrap and permutation). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press and Owen A. B. (2001). "Empirical likelihood". Chapman and Hall/CRC Press. ISBN: 9781584880714.
Chromosome files in the Fasta format usually contain large sequences like human genome. Sometimes users have to split these chromosomes into different files according to their chromosome number. The chromseq can help to handle this. So the selected chromosome sequence can be used for downstream analysis like motif finding. Howard Y. Chang(2019) <doi:10.1038/s41587-019-0206-z>.
Hospital data analysis workflow tools, modeling, and automations. This library provides many useful tools to review common administrative hospital data. Some of these include average length of stay, readmission rates, average net pay amounts by service lines just to name a few. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.
This package provides features that allow users to download weather data published by the Japan Meteorological Agency (JMA) website (<https://www.jma.go.jp/jma/index.html>). The data includes information dating back to 1976 and aligns with the categories available on the website. Additionally, users can process the best track data of typhoons and easily handle earthquake record files.
Stability based methods for model order selection in clustering problems (Valentini, G (2007), <doi:10.1093/bioinformatics/btl600>). Using multiple perturbations of the data the stability of clustering solutions is assessed. Different perturbations may be used: resampling techniques, random projections and noise injection. Stability measures for the estimate of clustering solutions and statistical tests to assess their significance are provided.
Calculate various functions needed for design and monitoring clinical trials with negative binomial endpoint with variable follow-up. This version has a few changes compared to the previous version 1.0.0, including (1) correct a typo in Type 1 censoring, mtbnull=bnull and (2) restructure the code to account for shape parameter equal to zero, i.e. Poisson scenario.
Distance based bipartite matching using minimum cost flow, oriented to matching of treatment and control groups in observational studies ('Hansen and Klopfer 2006 <doi:10.1198/106186006X137047>). Routines are provided to generate distances from generalised linear models (propensity score matching), formulas giving variables on which to limit matched distances, stratified or exact matching directives, or calipers, alone or in combination.
Analysis of features by phi delta diagrams. In particular, functions for reading data and calculating phi and delta as well as the functionality to plot it. Moreover it is possible to do further analysis on the data by generating rankings. For more information on phi delta diagrams, see also Giuliano Armano (2015) <doi:10.1016/j.ins.2015.07.028>.
Srt file is a common subtitle format for videos, it contains subtitle and when the subtitle showed. This package is for align time of srt file, and also change color, style and position of subtitle in videos, the srt file will be read as a vector into R, and can be write into srt file after modified using this package.
Graphical outputs and treatment for a database of fish pass monitoring. It is a part of the STACOMI open source project developed in France by the French Office for Biodiversity institute to centralize data obtained by fish pass monitoring. This version is available in French and English. See <http://stacomir.r-forge.r-project.org/> for more information on STACOMI'.
Simulates data sets in order to explore modeling techniques or better understand data generating processes. The user specifies a set of relationships between covariates, and generates data based on these specifications. The final data sets can represent data from randomized control trials, repeated measure (longitudinal) designs, and cluster randomized trials. Missingness can be generated using various mechanisms (MCAR, MAR, NMAR).
This package provides a shiny interface for a simpler use of the sbm R package. It also contains useful functions to easily explore the sbm package results. With this package you should be able to use the stochastic block model without any knowledge in R, get automatic reports and nice visuals, as well as learning the basic functions of sbm'.
Microarray expression matrix platform GPL6106 and clinical data for 67 septicemic patients and made them available as GEO accession [GSE13015](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13015). GSE13015 data have been parsed into a SummarizedExperiment object available in ExperimentHub. This data data could be used as an example supporting BloodGen3Module R package.
This package provides a cross-platform Perl-based R function to create Excel 2003 (XLS) and Excel 2007 (XLSX) files from one or more data frames. Each data frame will be written to a separate named worksheet in the Excel spreadsheet. The worksheet name will be the name of the data frame it contains or can be specified by the user.
This package lets you create a web app that makes it easier to test web clients without using the internet. It includes a web app framework with path matching, parameters and templates. It can parse various HTTP request bodies. It can send JSON data or files from the disk. It includes a web app that implements the httpbin.org web service.
An R package for multiple imputation using chained random forests. Implemented methods can handle missing data in mixed types of variables by using prediction-based or node-based conditional distributions constructed using random forests. For prediction-based imputation, the method based on the empirical distribution of out-of-bag prediction errors of random forests and the method based on normality assumption for prediction errors of random forests are provided for imputing continuous variables. And the method based on predicted probabilities is provided for imputing categorical variables. For node-based imputation, the method based on the conditional distribution formed by the predicting nodes of random forests, and the method based on proximity measures of random forests are provided. More details of the statistical methods can be found in Hong et al. (2020) <arXiv:2004.14823>.
Researchers commonly need to summarize scientific information, a process known as evidence synthesis'. The first stage of a synthesis process (such as a systematic review or meta-analysis) is to download a list of references from academic search engines such as Web of Knowledge or Scopus'. The traditional approach to systematic review is then to sort these data manually, first by locating and removing duplicated entries, and then screening to remove irrelevant content by viewing titles and abstracts (in that order). revtools provides interfaces for each of these tasks. An alternative approach, however, is to draw on tools from machine learning to visualise patterns in the corpus. In this case, you can use revtools to render ordinations of text drawn from article titles, keywords and abstracts, and interactively select or exclude individual references, words or topics.
It performs All-Resolutions Inference (ARI) on functional Magnetic Resonance Image (fMRI) data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis. The method is described in Rosenblatt, Finos, Weeda, Solari, Goeman (2018) <doi:10.1016/j.neuroimage.2018.07.060>.
This package provides a variable selection method using B-Splines in multivariate nOnparametric Regression models Based on partial dErivatives Regularization (ABSORBER) implements a novel variable selection method in a nonlinear multivariate model using B-splines. For further details we refer the reader to the paper Savino, M. E. and Lévy-Leduc, C. (2024), <https://hal.science/hal-04434820>.
This package provides a quick method for visualizing non-aggregated line-list or aggregated census data stratified by age and one or two categorical variables (e.g. gender and health status) with any number of values. It returns a ggplot object, allowing the user to further customize the output. This package is part of the R4Epis project <https://r4epis.netlify.app/>.
This package provides an alternative approach to aoristic analyses for archaeological datasets by fitting Bayesian parametric growth models and non-parametric random-walk Intrinsic Conditional Autoregressive (ICAR) models on time frequency data (Crema (2024)<doi:10.1111/arcm.12984>). It handles event typo-chronology based timespans defined by start/end date as well as more complex user-provided vector of probabilities.