_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-ods 0.2.0
Propagated dependencies: r-survival@3.8-3 r-cubature@2.1.3
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/Yinghao-Pan/ODS
Licenses: GPL 2+
Synopsis: Statistical Methods for Outcome-Dependent Sampling Designs
Description:

Outcome-dependent sampling (ODS) schemes are cost-effective ways to enhance study efficiency. In ODS designs, one observes the exposure/covariates with a probability that depends on the outcome variable. Popular ODS designs include case-control for binary outcome, case-cohort for time-to-event outcome, and continuous outcome ODS design (Zhou et al. 2002) <doi: 10.1111/j.0006-341X.2002.00413.x>. Because ODS data has biased sampling nature, standard statistical analysis such as linear regression will lead to biases estimates of the population parameters. This package implements four statistical methods related to ODS designs: (1) An empirical likelihood method analyzing the primary continuous outcome with respect to exposure variables in continuous ODS design (Zhou et al., 2002). (2) A partial linear model analyzing the primary outcome in continuous ODS design (Zhou, Qin and Longnecker, 2011) <doi: 10.1111/j.1541-0420.2010.01500.x>. (3) Analyze a secondary outcome in continuous ODS design (Pan et al. 2018) <doi: 10.1002/sim.7672>. (4) An estimated likelihood method analyzing a secondary outcome in case-cohort data (Pan et al. 2017) <doi: 10.1111/biom.12838>.

r-qga 1.0
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://barcaroli.github.io/QGA/
Licenses: GPL 2+
Synopsis: Quantum Genetic Algorithm
Description:

Function that implements the Quantum Genetic Algorithm, first proposed by Han and Kim in 2000. This is an R implementation of the python application developed by Lahoz-Beltra (<https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms>). Each optimization problem is represented as a maximization one, where each solution is a sequence of (qu)bits. Following the quantum paradigm, these qubits are in a superposition state: when measuring them, they collapse in a 0 or 1 state. After measurement, the fitness of the solution is calculated as in usual genetic algorithms. The evolution at each iteration is oriented by the application of two quantum gates to the amplitudes of the qubits: (1) a rotation gate (always); (2) a Pauli-X gate (optionally). The rotation is based on the theta angle values: higher values allow a quicker evolution, and lower values avoid local maxima. The Pauli-X gate is equivalent to the classical mutation operator and determines the swap between alfa and beta amplitudes of a given qubit. The package has been developed in such a way as to permit a complete separation between the engine, and the particular problem subject to combinatorial optimization.

r-nph 2.1
Propagated dependencies: r-survival@3.8-3 r-mvtnorm@1.3-3 r-multcomp@1.4-28 r-muhaz@1.2.6.4 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nph
Licenses: GPL 3
Synopsis: Planning and Analysing Survival Studies under Non-Proportional Hazards
Description:

Piecewise constant hazard functions are used to flexibly model survival distributions with non-proportional hazards and to simulate data from the specified distributions. A function to calculate weighted log-rank tests for the comparison of two hazard functions is included. Also, a function to calculate a test using the maximum of a set of test statistics from weighted log-rank tests (MaxCombo test) is provided. This test utilizes the asymptotic multivariate normal joint distribution of the separate test statistics. The correlation is estimated from the data. These methods are described in Ristl et al. (2021) <doi:10.1002/pst.2062>. Finally, a function is provided for the estimation and inferential statistics of various parameters that quantify the difference between two survival curves. Eligible parameters are differences in survival probabilities, log survival probabilities, complementary log log (cloglog) transformed survival probabilities, quantiles of the survival functions, log transformed quantiles, restricted mean survival times, as well as an average hazard ratio, the Cox model score statistic (logrank statistic), and the Cox-model hazard ratio. Adjustments for multiple testing and simultaneous confidence intervals are calculated using a multivariate normal approximation to the set of selected parameters.

r-aqp 2.2-1
Propagated dependencies: r-stringr@1.5.1 r-lattice@0.22-7 r-farver@2.1.2 r-digest@0.6.37 r-data-table@1.17.4 r-colorspace@2.1-1 r-cluster@2.1.8.1 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://ncss-tech.github.io/aqp/
Licenses: GPL 3+
Synopsis: Algorithms for Quantitative Pedology
Description:

The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to organize a loosely-related set of concepts and source code on the topic of soil profile visualization, aggregation, and classification into this package (aqp). Over the past 8 years, the project has grown into a suite of related R packages that enhance and simplify the quantitative analysis of soil profile data. Central to the AQP project is a new vocabulary of specialized functions and data structures that can accommodate the inherent complexity of soil profile information; freeing the scientist to focus on ideas rather than boilerplate data processing tasks <doi:10.1016/j.cageo.2012.10.020>. These functions and data structures have been extensively tested and documented, applied to projects involving hundreds of thousands of soil profiles, and deeply integrated into widely used tools such as SoilWeb <https://casoilresource.lawr.ucdavis.edu/soilweb-apps>. Components of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an important role in routine data analysis within the USDA-NRCS Soil Science Division. The AQP suite of R packages offer a convenient platform for bridging the gap between pedometric theory and practice.

r-lax 1.2.4
Propagated dependencies: r-sandwich@3.1-1 r-revdbayes@1.5.5 r-numderiv@2016.8-1.1 r-exdex@1.2.3 r-chandwich@1.1.6
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://paulnorthrop.github.io/lax/
Licenses: GPL 2+
Synopsis: Loglikelihood Adjustment for Extreme Value Models
Description:

This package performs adjusted inferences based on model objects fitted, using maximum likelihood estimation, by the extreme value analysis packages eva <https://cran.r-project.org/package=eva>, evd <https://cran.r-project.org/package=evd>, evir <https://cran.r-project.org/package=evir>, extRemes <https://cran.r-project.org/package=extRemes>, fExtremes <https://cran.r-project.org/package=fExtremes>, ismev <https://cran.r-project.org/package=ismev>, mev <https://cran.r-project.org/package=mev>, POT <https://cran.r-project.org/package=POT> and texmex <https://cran.r-project.org/package=texmex>. Adjusted standard errors and an adjusted loglikelihood are provided, using the chandwich package <https://cran.r-project.org/package=chandwich> and the object-oriented features of the sandwich package <https://cran.r-project.org/package=sandwich>. The adjustment is based on a robust sandwich estimator of the parameter covariance matrix, based on the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>. This can be used for cluster correlated data when interest lies in the parameters of the marginal distributions, or for performing inferences that are robust to certain types of model misspecification. Univariate extreme value models, including regression models, are supported.

r-ews 0.2.0
Propagated dependencies: r-numderiv@2016.8-1.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EWS
Licenses: GPL 3
Synopsis: Early Warning System
Description:

The purpose of Early Warning Systems (EWS) is to detect accurately the occurrence of a crisis, which is represented by a binary variable which takes the value of one when the event occurs, and the value of zero otherwise. EWS are a toolbox for policymakers to prevent or attenuate the impact of economic downturns. Modern EWS are based on the econometric framework of Kauppi and Saikkonen (2008) <doi:10.1162/rest.90.4.777>. Specifically, this framework includes four dichotomous models, relying on a logit approach to model the relationship between yield spreads and future recessions, controlling for recession risk factors. These models can be estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014) <doi:10.1016/j.ijforecast.2014.03.015>. This package provides both methods for estimating these models and a dataset covering 13 OECD countries over a period of 45 years. In addition, this package also provides methods for the analysis of the propagation mechanisms of an exogenous shock, as well as robust confidence intervals for these response functions using a block-bootstrap method as in Lajaunie (2021). This package constitutes a useful toolbox (data and functions) for scholars as well as policymakers.

r-mnt 1.3
Propagated dependencies: r-pracma@2.4.4 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mnt
Licenses: FSDG-compatible
Synopsis: Affine Invariant Tests of Multivariate Normality
Description:

Various affine invariant multivariate normality tests are provided. It is designed to accompany the survey article Ebner, B. and Henze, N. (2020) <arXiv:2004.07332> titled "Tests for multivariate normality -- a critical review with emphasis on weighted L^2-statistics". We implement new and time honoured L^2-type tests of multivariate normality, such as the Baringhaus-Henze-Epps-Pulley (BHEP) test, the Henze-Zirkler test, the test of Henze-Jiménes-Gamero, the test of Henze-Jiménes-Gamero-Meintanis, the test of Henze-Visage, the Dörr-Ebner-Henze test based on harmonic oscillator and the Dörr-Ebner-Henze test based on a double estimation in a PDE. Secondly, we include the measures of multivariate skewness and kurtosis by Mardia, Koziol, Malkovich and Afifi and Móri, Rohatgi and Székely, as well as the associated tests. Thirdly, we include the tests of multivariate normality by Cox and Small, the energy test of Székely and Rizzo, the tests based on spherical harmonics by Manzotti and Quiroz and the test of Pudelko. All the functions and tests need the data to be a n x d matrix where n is the samplesize (number of rows) and d is the dimension (number of columns).

r-frk 2.3.1
Propagated dependencies: r-tmb@1.9.17 r-statmod@1.5.0 r-sparseinv@0.1.3 r-spacetime@1.3-3 r-sp@2.2-0 r-scales@1.4.0 r-reshape2@1.4.4 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-plyr@1.8.9 r-matrix@1.7-3 r-hmisc@5.2-3 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-fmesher@0.3.0 r-dplyr@1.1.4 r-digest@0.6.37
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://andrewzm.github.io/FRK/
Licenses: GPL 2+
Synopsis: Fixed Rank Kriging
Description:

This package provides a tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.

r-gb2 2.1.2
Propagated dependencies: r-survey@4.4-2 r-numderiv@2016.8-1.1 r-laeken@0.5.3 r-hypergeo@1.2-14 r-cubature@2.1.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GB2
Licenses: GPL 2+
Synopsis: Generalized Beta Distribution of the Second Kind: Properties, Likelihood, Estimation
Description:

The GB2 package explores the Generalized Beta distribution of the second kind. Density, cumulative distribution function, quantiles and moments of the distribution are given. Functions for the full log-likelihood, the profile log-likelihood and the scores are provided. Formulas for various indicators of inequality and poverty under the GB2 are implemented. The GB2 is fitted by the methods of maximum pseudo-likelihood estimation using the full and profile log-likelihood, and non-linear least squares estimation of the model parameters. Various plots for the visualization and analysis of the results are provided. Variance estimation of the parameters is provided for the method of maximum pseudo-likelihood estimation. A mixture distribution based on the compounding property of the GB2 is presented (denoted as "compound" in the documentation). This mixture distribution is based on the discretization of the distribution of the underlying random scale parameter. The discretization can be left or right tail. Density, cumulative distribution function, moments and quantiles for the mixture distribution are provided. The compound mixture distribution is fitted using the method of maximum pseudo-likelihood estimation. The fit can also incorporate the use of auxiliary information. In this new version of the package, the mixture case is complemented with new functions for variance estimation by linearization and comparative density plots.

r-nca 4.0.3
Propagated dependencies: r-truncnorm@1.0-9 r-quantreg@6.1 r-plotly@4.10.4 r-lpsolve@5.6.23 r-kernsmooth@2.23-26 r-iterators@1.0.14 r-gplots@3.2.0 r-ggplot2@3.5.2 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://www.eur.nl/en/erim/erim/research-initiatives/necessary-condition-analysis
Licenses: GPL 3+
Synopsis: Necessary Condition Analysis
Description:

This package performs a Necessary Condition Analysis (NCA). (Dul, J. 2016. Necessary Condition Analysis (NCA). Logic and Methodology of Necessary but not Sufficient causality." Organizational Research Methods 19(1), 10-52) <doi:10.1177/1094428115584005>. NCA identifies necessary (but not sufficient) conditions in datasets, where x causes (e.g. precedes) y. Instead of drawing a regression line through the middle of the data in an xy-plot, NCA draws the ceiling line. The ceiling line y = f(x) separates the area with observations from the area without observations. (Nearly) all observations are below the ceiling line: y <= f(x). The empty zone is in the upper left hand corner of the xy-plot (with the convention that the x-axis is horizontal and the y-axis is vertical and that values increase upwards and to the right''). The ceiling line is a (piecewise) linear non-decreasing line: a linear step function or a straight line. It indicates which level of x (e.g. an effort or input) is necessary but not sufficient for a (desired) level of y (e.g. good performance or output). A quick start guide for using this package can be found here: <https://repub.eur.nl/pub/78323/> or <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2624981>.

r-bsl 3.2.5
Propagated dependencies: r-whitening@1.4.0 r-stringr@1.5.1 r-rdpack@2.6.4 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-mvtnorm@1.3-3 r-mass@7.3-65 r-gridextra@2.3 r-glasso@1.11 r-ggplot2@3.5.2 r-foreach@1.5.2 r-dorng@1.8.6.2 r-copula@1.1-6 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BSL
Licenses: GPL 2+
Synopsis: Bayesian Synthetic Likelihood
Description:

Bayesian synthetic likelihood (BSL, Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) is an alternative to standard, non-parametric approximate Bayesian computation (ABC). BSL assumes a multivariate normal distribution for the summary statistic likelihood and it is suitable when the distribution of the model summary statistics is sufficiently regular. This package provides a Metropolis Hastings Markov chain Monte Carlo implementation of four methods (BSL, uBSL, semiBSL and BSLmisspec) and two shrinkage estimators (graphical lasso and Warton's estimator). uBSL (Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) uses an unbiased estimator to the normal density. A semi-parametric version of BSL (semiBSL, An et al. (2018) <arXiv:1809.05800>) is more robust to non-normal summary statistics. BSLmisspec (Frazier et al. 2019 <arXiv:1904.04551>) estimates the Gaussian synthetic likelihood whilst acknowledging that there may be incompatibility between the model and the observed summary statistic. Shrinkage estimation can help to decrease the number of model simulations when the dimension of the summary statistic is high (e.g., BSLasso, An et al. (2019) <doi:10.1080/10618600.2018.1537928>). Extensions to this package are planned. For a journal article describing how to use this package, see An et al. (2022) <doi:10.18637/jss.v101.i11>.

r-lst 2.0.0
Propagated dependencies: r-terra@1.8-50
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=LST
Licenses: AGPL 3
Synopsis: Land Surface Temperature Retrieval for Landsat 8
Description:

Calculates Land Surface Temperature from Landsat band 10 and 11. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. Jimenez-Munoz JC, Cristobal J, Sobrino JA, et al (2009). <doi: 10.1109/TGRS.2008.2007125>. Land surface temperature retrieval from LANDSAT TM 5. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004). <doi:10.1016/j.rse.2004.02.003>. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Srivastava PK, Majumdar TJ, Bhattacharya AK (2009). <doi: 10.1016/j.asr.2009.01.023>. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Valor E (1996). <doi:10.1016/0034-4257(96)00039-9>. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Van de Griend AA, Owe M (1993). <doi:10.1080/01431169308904400>. Land Surface Temperature Retrieval from Landsat 8 TIRSâ Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Yu X, Guo X, Wu Z (2014). <doi:10.3390/rs6109829>. Calibration and Validation of land surface temperature for Landsat8-TIRS sensor. Land product validation and evolution. SkokoviÄ D, Sobrino JA, Jimenez-Munoz JC, Soria G, Julien Y, Mattar C, Cristóbal J. (2014).

r-erp 2.2
Propagated dependencies: r-pacman@0.5.1 r-mnormt@2.1.1 r-irlba@2.3.5.1 r-fdrtool@1.2.18 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: http://erpinr.org
Licenses: GPL 2+
Synopsis: Significance Analysis of Event-Related Potentials Data
Description:

This package provides functions for signal detection and identification designed for Event-Related Potentials (ERP) data in a linear model framework. The functional F-test proposed in Causeur, Sheu, Perthame, Rufini (2018, submitted) for analysis of variance issues in ERP designs is implemented for signal detection (tests for mean difference among groups of curves in One-way ANOVA designs for example). Once an experimental effect is declared significant, identification of significant intervals is achieved by the multiple testing procedures reviewed and compared in Sheu, Perthame, Lee and Causeur (2016, <DOI:10.1214/15-AOAS888>). Some of the methods gathered in the package are the classical FDR- and FWER-controlling procedures, also available using function p.adjust. The package also implements the Guthrie-Buchwald procedure (Guthrie and Buchwald, 1991 <DOI:10.1111/j.1469-8986.1991.tb00417.x>), which accounts for the auto-correlation among t-tests to control erroneous detection of short intervals. The Adaptive Factor-Adjustment method is an extension of the method described in Causeur, Chu, Hsieh and Sheu (2012, <DOI:10.3758/s13428-012-0230-0>). It assumes a factor model for the correlation among tests and combines adaptively the estimation of the signal and the updating of the dependence modelling (see Sheu et al., 2016, <DOI:10.1214/15-AOAS888> for further details).

r-twl 1.0
Propagated dependencies: r-rfast@2.1.5.1 r-mcmcpack@1.7-1 r-data-table@1.17.4 r-corrplot@0.95
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=twl
Licenses: GPL 2+
Synopsis: Two-Way Latent Structure Clustering Model
Description:

Implementation of a Bayesian two-way latent structure model for integrative genomic clustering. The model clusters samples in relation to distinct data sources, with each subject-dataset receiving a latent cluster label, though cluster labels have across-dataset meaning because of the model formulation. A common scaling across data sources is unneeded, and inference is obtained by a Gibbs Sampler. The model can fit multivariate Gaussian distributed clusters or a heavier-tailed modification of a Gaussian density. Uniquely among integrative clustering models, the formulation makes no nestedness assumptions of samples across data sources -- the user can still fit the model if a study subject only has information from one data source. The package provides a variety of post-processing functions for model examination including ones for quantifying observed alignment of clusterings across genomic data sources. Run time is optimized so that analyses of datasets on the order of thousands of features on fewer than 5 datasets and hundreds of subjects can converge in 1 or 2 days on a single CPU. See "Swanson DM, Lien T, Bergholtz H, Sorlie T, Frigessi A, Investigating Coordinated Architectures Across Clusters in Integrative Studies: a Bayesian Two-Way Latent Structure Model, 2018, <doi:10.1101/387076>, Cold Spring Harbor Laboratory" at <https://www.biorxiv.org/content/early/2018/08/07/387076.full.pdf> for model details.

r-mcb 0.1.15
Propagated dependencies: r-smoothmest@0.1-3 r-reshape2@1.4.4 r-ncvreg@3.15.0 r-mass@7.3-65 r-leaps@3.2 r-lars@1.3 r-glmnet@4.1-8 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mcb
Licenses: GPL 2+
Synopsis: Model Confidence Bounds
Description:

When choosing proper variable selection methods, it is important to consider the uncertainty of a certain method. The model confidence bound for variable selection identifies two nested models (upper and lower confidence bound models) containing the true model at a given confidence level. A good variable selection method is the one of which the model confidence bound under a certain confidence level has the shortest width. When visualizing the variability of model selection and comparing different model selection procedures, model uncertainty curve is a good graphical tool. A good variable selection method is the one of whose model uncertainty curve will tend to arch towards the upper left corner. This function aims to obtain the model confidence bound and draw the model uncertainty curve of certain single model selection method under a coverage rate equal or little higher than user-given confidential level. About what model confidence bound is and how it work please see Li,Y., Luo,Y., Ferrari,D., Hu,X. and Qin,Y. (2019) Model Confidence Bounds for Variable Selection. Biometrics, 75:392-403. <DOI:10.1111/biom.13024>. Besides, flare is needed only you apply the SQRT or LAD method ('mcb totally has 8 methods). Although flare has been archived by CRAN, you can still get it in <https://CRAN.R-project.org/package=flare> and the latest version is useful for mcb'.

r-hce 0.8.5
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hce
Licenses: Expat
Synopsis: Design and Analysis of Hierarchical Composite Endpoints
Description:

Simulate and analyze hierarchical composite endpoints. Includes implementation for the kidney hierarchical composite endpoint as defined in Heerspink HL et al (2023) â Development and validation of a new hierarchical composite end point for clinical trials of kidney disease progressionâ (Journal of the American Society of Nephrology 34 (2): 2025â 2038, <doi:10.1681/ASN.0000000000000243>). Win odds, also called Wilcoxon-Mann-Whitney or success odds, is the main analysis method. Other win statistics (win probability, win ratio, net benefit) are also implemented in the univariate case, provided there is no censoring. The win probability analysis is based on the Brunner-Munzel test and uses the DeLong-DeLong-Clarke-Pearson variance estimator, as described by Brunner and Konietschke (2025) in â An unbiased rank-based estimator of the Mannâ Whitney variance including the case of tiesâ (Statistical Papers 66 (1): 20, <doi:10.1007/s00362-024-01635-0>). Stratification and covariate adjustment are performed based on the methodology presented by Koch GG et al. in â Issues for covariance analysis of dichotomous and ordered categorical data from randomized clinical trials and non-parametric strategies for addressing themâ (Statistics in Medicine 17 (15-16): 1863â 92). For a review, see Gasparyan SB et al (2021) â Adjusted win ratio with stratification: Calculation methods and interpretationâ (Statistical Methods in Medical Research 30 (2): 580â 611, <doi:10.1177/0962280220942558>).

r-abm 0.4.3
Propagated dependencies: r-rcpp@1.0.14 r-r6@2.6.1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/junlingm/ABM
Licenses: GPL 2+
Synopsis: Agent Based Model Simulation Framework
Description:

This package provides a high-performance, flexible and extensible framework to develop continuous-time agent based models. Its high performance allows it to simulate millions of agents efficiently. Agents are defined by their states (arbitrary R lists). The events are handled in chronological order. This avoids the multi-event interaction problem in a time step of discrete-time simulations, and gives precise outcomes. The states are modified by provided or user-defined events. The framework provides a flexible and customizable implementation of state transitions (either spontaneous or caused by agent interactions), making the framework suitable to apply to epidemiology and ecology, e.g., to model life history stages, competition and cooperation, and disease and information spread. The agent interactions are flexible and extensible. The framework provides random mixing and network interactions, and supports multi-level mixing patterns. It can be easily extended to other interactions such as inter- and intra-households (or workplaces and schools) by subclassing an R6 class. It can be used to study the effect of age-specific, group-specific, and contact- specific intervention strategies, and complex interactions between individual behavior and population dynamics. This modeling concept can also be used in business, economical and political models. As a generic event based framework, it can be applied to many other fields. More information about the implementation and examples can be found at <https://github.com/junlingm/ABM>.

r-bed 1.6.2
Propagated dependencies: r-visnetwork@2.1.2 r-stringr@1.5.1 r-shiny@1.10.0 r-rstudioapi@0.17.1 r-readr@2.1.5 r-neo2r@2.4.2 r-miniui@0.1.2 r-htmltools@0.5.8.1 r-dt@0.33 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://patzaw.github.io/BED/
Licenses: GPL 3
Synopsis: Biological Entity Dictionary (BED)
Description:

An interface for the Neo4j database providing mapping between different identifiers of biological entities. This Biological Entity Dictionary (BED) has been developed to address three main challenges. The first one is related to the completeness of identifier mappings. Indeed, direct mapping information provided by the different systems are not always complete and can be enriched by mappings provided by other resources. More interestingly, direct mappings not identified by any of these resources can be indirectly inferred by using mappings to a third reference. For example, many human Ensembl gene ID are not directly mapped to any Entrez gene ID but such mappings can be inferred using respective mappings to HGNC ID. The second challenge is related to the mapping of deprecated identifiers. Indeed, entity identifiers can change from one resource release to another. The identifier history is provided by some resources, such as Ensembl or the NCBI, but it is generally not used by mapping tools. The third challenge is related to the automation of the mapping process according to the relationships between the biological entities of interest. Indeed, mapping between gene and protein ID scopes should not be done the same way than between two scopes regarding gene ID. Also, converting identifiers from different organisms should be possible using gene orthologs information. The method has been published by Godard and van Eyll (2018) <doi:10.12688/f1000research.13925.3>.

r-odr 1.6.3
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=odr
Licenses: GPL 3
Synopsis: Optimal Design and Statistical Power for Experimental Studies Investigating Main, Mediation, and Moderation Effects
Description:

Calculate the optimal sample size allocation that uses the minimum resources to achieve targeted statistical power in experiments. Perform power analyses with and without accommodating costs and budget. The designs cover single-level and multilevel experiments detecting main, mediation, and moderation effects (and some combinations). The references for the proposed methods include: (1) Shen, Z., & Kelcey, B. (2020). Optimal sample allocation under unequal costs in cluster-randomized trials. Journal of Educational and Behavioral Statistics, 45(4): 446-474. <doi:10.3102/1076998620912418>. (2) Shen, Z., & Kelcey, B. (2022b). Optimal sample allocation for three-level multisite cluster-randomized trials. Journal of Research on Educational Effectiveness, 15 (1), 130-150. <doi:10.1080/19345747.2021.1953200>. (3) Shen, Z., & Kelcey, B. (2022a). Optimal sample allocation in multisite randomized trials. The Journal of Experimental Education, 90(3), 693-711. <doi:10.1080/00220973.2020.1830361>. (4) Shen, Z., Leite, W., Zhang, H., Quan, J., & Kuang, H. (2025). Using ant colony optimization to identify optimal sample allocations in cluster-randomized trials. The Journal of Experimental Education, 93(1), 167-185. <doi:10.1080/00220973.2024.2306392>. (5) Shen, Z., Li, W., & Leite, W. (in press). Statistical power and optimal design for randomized controlled trials investigating mediation effects. Psychological Methods. <doi:10.1037/met0000698>. (6) Champely, S. (2020). pwr: Basic functions for power analysis (Version 1.3-0) [Software]. Available from <https://CRAN.R-project.org/package=pwr>.

r-edl 1.1
Propagated dependencies: r-plotfunctions@1.4 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=edl
Licenses: GPL 2+
Synopsis: Toolbox for Error-Driven Learning Simulations with Two-Layer Networks
Description:

Error-driven learning (based on the Widrow & Hoff (1960)<https://isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf> learning rule, and essentially the same as Rescorla-Wagner's learning equations (Rescorla & Wagner, 1972, ISBN: 0390718017), which are also at the core of Naive Discrimination Learning, (Baayen et al, 2011, <doi:10.1037/a0023851>) can be used to explain bottom-up human learning (Hoppe et al, <doi:10.31234/osf.io/py5kd>), but is also at the core of artificial neural networks applications in the form of the Delta rule. This package provides a set of functions for building small-scale simulations to investigate the dynamics of error-driven learning and it's interaction with the structure of the input. For modeling error-driven learning using the Rescorla-Wagner equations the package ndl (Baayen et al, 2011, <doi:10.1037/a0023851>) is available on CRAN at <https://cran.r-project.org/package=ndl>. However, the package currently only allows tracing of a cue-outcome combination, rather than returning the learned networks. To fill this gap, we implemented a new package with a few functions that facilitate inspection of the networks for small error driven learning simulations. Note that our functions are not optimized for training large data sets (no parallel processing), as they are intended for small scale simulations and course examples. (Consider the python implementation pyndl <https://pyndl.readthedocs.io/en/latest/> for that purpose.).

r-olr 1.2
Propagated dependencies: r-readxl@1.4.5 r-plyr@1.8.9 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/MatHatter/olr_r
Licenses: GPL 3
Synopsis: Optimal Linear Regression
Description:

The olr function systematically evaluates multiple linear regression models by exhaustively fitting all possible combinations of independent variables against the specified dependent variable. It selects the model that yields the highest adjusted R-squared (by default) or R-squared, depending on user preference. In model evaluation, both R-squared and adjusted R-squared are key metrics: R-squared measures the proportion of variance explained but tends to increase with the addition of predictorsâ regardless of relevanceâ potentially leading to overfitting. Adjusted R-squared compensates for this by penalizing model complexity, providing a more balanced view of fit quality. The goal of olr is to identify the most suitable model that captures the underlying structure of the data while avoiding unnecessary complexity. By comparing both metrics, it offers a robust evaluation framework that balances predictive power with model parsimony. Example Analogy: Imagine a gardener trying to understand what influences plant growth (the dependent variable). They might consider variables like sunlight, watering frequency, soil type, and nutrients (independent variables). Instead of manually guessing which combination works best, the olr function automatically tests every possible combination of predictors and identifies the most effective modelâ based on either the highest R-squared or adjusted R-squared value. This saves the user from trial-and-error modeling and highlights only the most meaningful variables for explaining the outcome. A Python version is also available at <https://pypi.org/project/olr>.

r-khq 0.2.0
Propagated dependencies: r-openxlsx@4.2.8 r-magrittr@2.0.3
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/augustobrusaca/KHQ
Licenses: Expat
Synopsis: Methods for Calculating 'KHQ' Scores and 'KHQ5D' Utility Index Scores
Description:

The King's Health Questionnaire (KHQ) is a disease-specific, self-administered questionnaire designed specific to assess the impact of Urinary Incontinence (UI) on Quality of Life. The questionnaire was developed by Kelleher and collaborators (1997) <doi:10.1111/j.1471-0528.1997.tb11006.x>. It is a simple, acceptable and reliable measure to use in the clinical setting and a research tool that is useful in evaluating UI treatment outcomes. The KHQ five dimensions (KHQ5D) is a condition-specific preference-based measure developed by Brazier and collaborators (2008) <doi:10.1177/0272989X07301820>. Although not as popular as the SF6D <doi:10.1016/S0895-4356(98)00103-6> and EQ-5D <https://euroqol.org/>, the KHQ5D measures health-related quality of life (HRQoL) specifically for UI, not general conditions like the others two instruments mentioned. The KHQ5D ca be used in the clinical and economic evaluation of health care. The subject self-rates their health in terms of five dimensions: Role Limitation (RL), Physical Limitations (PL), Social Limitations (SL), Emotions (E), and Sleep (S). Frequently the states on these five dimensions are converted to a single utility index using country specific value sets, which can be used in the clinical and economic evaluation of health care as well as in population health surveys. This package provides methods to calculate scores for each dimension of the KHQ; converts KHQ item scores to KHQ5D scores; and also calculates the utility index of the KHQ5D.

r-mts 1.2.1
Propagated dependencies: r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-mvtnorm@1.3-3 r-fgarch@4033.92 r-fbasics@4041.97
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MTS
Licenses: FSDG-compatible
Synopsis: All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models
Description:

Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.

r-nst 3.1.10
Propagated dependencies: r-vegan@2.6-10 r-permute@0.9-7 r-icamp@1.5.12 r-dirichletreg@0.7-1 r-bigmemory@4.6.4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/DaliangNing/NST
Licenses: GPL 2
Synopsis: Normalized Stochasticity Ratio
Description:

To estimate ecological stochasticity in community assembly. Understanding the community assembly mechanisms controlling biodiversity patterns is a central issue in ecology. Although it is generally accepted that both deterministic and stochastic processes play important roles in community assembly, quantifying their relative importance is challenging. The new index, normalized stochasticity ratio (NST), is to estimate ecological stochasticity, i.e. relative importance of stochastic processes, in community assembly. With functions in this package, NST can be calculated based on different similarity metrics and/or different null model algorithms, as well as some previous indexes, e.g. previous Stochasticity Ratio (ST), Standard Effect Size (SES), modified Raup-Crick metrics (RC). Functions for permutational test and bootstrapping analysis are also included. Previous ST is published by Zhou et al (2014) <doi:10.1073/pnas.1324044111>. NST is modified from ST by considering two alternative situations and normalizing the index to range from 0 to 1 (Ning et al 2019) <doi:10.1073/pnas.1904623116>. A modified version, MST, is a special case of NST, used in some recent or upcoming publications, e.g. Liang et al (2020) <doi:10.1016/j.soilbio.2020.108023>. SES is calculated as described in Kraft et al (2011) <doi:10.1126/science.1208584>. RC is calculated as reported by Chase et al (2011) <doi:10.1890/ES10-00117.1> and Stegen et al (2013) <doi:10.1038/ismej.2013.93>. Version 3 added NST based on phylogenetic beta diversity, used by Ning et al (2020) <doi:10.1038/s41467-020-18560-z>.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
Total results: 30177