Fast computation of multivariate analyses of small (10s to 100s markers) to big (1000s to 100000s) genotype data. Runs Principal Component Analysis allowing for centering, z-score standardization and scaling for genetic drift, projection of ancient samples to modern genetic space and multivariate tests for differences in group location (Permutation-Based Multivariate Analysis of Variance) and dispersion (Permutation-Based Multivariate Analysis of Dispersion).
This package implements the Seinhorst model to analyze the relationship between initial nematode densities and plant growth response using nonlinear least squares estimation. The package provides tools for model fitting, prediction, and visualization, facilitating the study of plant-nematode interactions. Model parameters can be estimated or set to predefined values based on Seinhorst (1986) <doi:10.1007/978-1-4613-2251-1_11>.
Bayesian Tensor Factorization for decomposition of tensor data sets using the trilinear CANDECOMP/PARAFAC (CP) factorization, with automatic component selection. The complete data analysis pipeline is provided, including functions and recommendations for data normalization and model definition, as well as missing value prediction and model visualization. The method performs factorization for three-way tensor datasets and the inference is implemented with Gibbs sampling.
This package implements an algorithm for generating maps, known as tile maps, in which each region is represented by a single tile of the same shape and size. The algorithm was first proposed in "Generating Tile Maps" by Graham McNeill and Scott Hale (2017) <doi:10.1111/cgf.13200>. Functions allow users to generate, plot, and compare square or hexagon tile maps.
FHIR R4 bundles in JSON format are derived from https://synthea.mitre.org/downloads. Transformation inspired by a kaggle notebook published by Dr Alexander Scarlat, https://www.kaggle.com/code/drscarlat/fhir-starter-parse-healthcare-bundles-into-tables. This is a very limited illustration of some basic parsing and reorganization processes. Additional tooling will be required to move beyond the Synthea data illustrations.
ClustIRR analyzes repertoires of B- and T-cell receptors. It starts by identifying communities of immune receptors with similar specificities, based on the sequences of their complementarity-determining regions (CDRs). Next, it employs a Bayesian probabilistic models to quantify differential community occupancy (DCO) between repertoires, allowing the identification of expanding or contracting communities in response to e.g. infection or cancer treatment.
The funOmics package ggregates or summarizes omics data into higher level functional representations such as GO terms gene sets or KEGG metabolic pathways. The aggregated data matrix represents functional activity scores that facilitate the analysis of functional molecular sets while allowing to reduce dimensionality and provide easier and faster biological interpretations. Coordinated functional activity scores can be as informative as single molecules!
This package provides a collection of microRNAs/targets from external resources, including validated microRNA-target databases (miRecords, miRTarBase and TarBase), predicted microRNA-target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan) and microRNA-disease/drug databases (miR2Disease, Pharmaco-miR VerSe and PhenomiR).
This package lets you interface to Nocedal et al. L-BFGS-B.3.0 limited memory BFGS minimizer with bounds on parameters. This registers a R compatible C interface to L-BFGS-B.3.0 that uses the same function types and optimization as the optim() function. This package also adds more stopping criteria as well as allowing the adjustment of more tolerances.
This package provides a low-level spell checker and morphological analyzer based on the famous hunspell library. The package can analyze or check individual words as well as parse text, LaTeX, HTML or XML documents. For a more user-friendly interface use the spelling package which builds on this package to automate checking of files, documentation and vignettes in all common formats.
This is a package for variable elimination (Gaussian elimination, Fourier-Motzkin elimination), Moore-Penrose pseudoinverse, reduction to reduced row echelon form, value substitution, projecting a vector on the convex polytope described by a system of (in)equations, simplify systems by removing spurious columns and rows and collapse implied equalities, test if a matrix is totally unimodular, compute variable ranges implied by linear (in)equalities.
This package implements a robust multivariate control-chart methodology for batch-based industrial processes with multiple correlated variables using the Dual STATIS (Structuration des Tableaux A Trois Indices de la Statistique) framework. A robust compromise covariance matrix is constructed from Phase I batches with the Minimum Covariance Determinant (MCD) estimator, and a Hotelling-type T² statistic is applied for anomaly detection in Phase II. The package includes functions to simulate clean and contaminated batches, to compute both robust and classical Hotelling T² control charts, to visualize results via robust biplots, and to launch an interactive shiny dashboard. An internal dataset (pharma_data) is provided for reproducibility. See Lavit, Escoufier, Sabatier and Traissac (1994) <doi:10.1016/0167-9473(94)90134-1> for the original STATIS methodology, and Rousseeuw and Van Driessen (1999) <doi:10.1080/00401706.1999.10485670> for the MCD estimator.
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute. These are the provided Ray AI libraries:
Data: Scalable datasets for ML;
Train: Distributed training;
Tune: Scalable hyperparameter tuning;
RLlib: Scalable reinforcement learning;
Serve: Scalable and programmable serving.
This package provides a number of functions to access the National Energy Research Laboratory Alternate Fuel Locator API <https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/>. The Alternate Fuel Locator shows the location of alternate fuel stations in the United States and Canada. This package also includes the data from the US Department of Energy Alternate Fuel database as a data set.
Helps enable adaptive management by codifying knowledge in the form of models generated from numerous analyses and data sets. Facilitates this process by storing all models and data sets in a single object that can be updated and saved, thus tracking changes in knowledge through time. A shiny application called AM Model Manager (modelMgr()) enables the use of these functions via a GUI.
Calculate ActiGraph counts from the X, Y, and Z axes of a triaxial accelerometer. This work was inspired by Neishabouri et al. who published the article "Quantification of Acceleration as Activity Counts in ActiGraph Wearables" on February 24, 2022. The link to the article (<https://pubmed.ncbi.nlm.nih.gov/35831446>) and python implementation of this code (<https://github.com/actigraph/agcounts>).
This package provides easy access to the AviList Global Avian Checklist, the first unified global bird taxonomy that harmonizes previous differences between International Ornithological Committee ('IOC'), Clements', and BirdLife checklists. This package contains the complete AviList dataset as R data objects ready for ornithological research and analysis. For more details see AviList Core Team (2025) <doi:10.2173/avilist.v2025>.
Utilities for Bratteli graphs. A tree is an example of a Bratteli graph. The package provides a function which generates a LaTeX file that renders the given Bratteli graph. It also provides functions to compute the dimensions of the vertices, the intrinsic kernels and the intrinsic distances. Intrinsic kernels and distances were introduced by Vershik (2014) <doi:10.1007/s10958-014-1958-0>.
This package provides functionality to automatically detect groove locations via a Bayesian changepoint detection method to be used in the data preprocessing step of forensic bullet matching algorithms. The methods in this package are based on those in Stephens (1994) <doi:10.2307/2986119>. Bayesian changepoint detection will simply be an option in the function from the package bulletxtrctr which identifies the groove locations.
Allows to generate colors from palettes defined in the colormap module of Node.js'. (see <https://github.com/bpostlethwaite/colormap> for more information). In total it provides 44 distinct palettes made from sequential and/or diverging colors. In addition to the pre defined palettes you can also specify your own set of colors. There are also scale functions that can be used with ggplot2'.
This package creates project specific directory and file templates that are written to a .Rprofile file. Upon starting a new R session, these templates can be used to streamline the creation of new directories that are standardized to the user's preferences and can include the initiation of a git repository, an RStudio R project, and project-local dependency management with the renv package.
This package provides a local haplotyping visualization toolbox to capture major patterns of co-inheritance between clusters of linked variants, whilst connecting findings to phenotypic and demographic traits across individuals. crosshap enables users to explore and understand genomic variation across a trait-associated region. For an example of successful local haplotype analysis, see Marsh et al. (2022) <doi:10.1007/s00122-022-04045-8>.
Several authors have proposed methods for constructing simultaneous confidence intervals for multinomial proportions. The package implements seven classical approachesâ Wilson, Quesenberry and Hurst, Goodman, Wald (with and without continuity correction), Fitzpatrick and Scott, and Sison and Glazâ along with Bayesian methods based on Dirichlet models. Both equal and unequal Dirichlet priors are supported, providing a broad framework for inference, data analysis, and sensitivity evaluation.
Testing functions for Covariance Matrices. These tests include high-dimension homogeneity of covariance matrix testing described by Schott (2007) <doi:10.1016/j.csda.2007.03.004> and high-dimensional one-sample tests of covariance matrix structure described by Fisher, et al. (2010) <doi:10.1016/j.jmva.2010.07.004>. Covariance matrix tests use C++ to speed performance and allow larger data sets.