Run a Gibbs sampler for a multivariate Bayesian sparse group selection model with Dirac, continuous and hierarchical spike prior for detecting pleiotropy on the traits. This package is designed for summary statistics containing estimated regression coefficients and its estimated covariance matrix. The methodology is available from: Baghfalaki, T., Sugier, P. E., Truong, T., Pettitt, A. N., Mengersen, K., & Liquet, B. (2021) <doi:10.1002/sim.8855>.
This package implements large-scale hypothesis testing by variance mixing. It takes two statistics per testing unit -- an estimated effect and its associated squared standard error -- and fits a nonparametric, shape-constrained mixture separately on two latent parameters. It reports local false discovery rates (lfdr) and local false sign rates (lfsr). Manuscript describing algorithm of MixTwice: Zheng et al(2021) <doi: 10.1093/bioinformatics/btab162>.
Following Sommer (2022) <https://mediatum.ub.tum.de/1658240> portfolio level risk estimates (e.g. Value at Risk, Expected Shortfall) are estimated by modeling each asset univariately by an ARMA-GARCH model and then their cross dependence via a Vine Copula model in a rolling window fashion. One can even condition on variables/time series at certain quantile levels to stress test the risk measure estimates.
Because your linear models deserve better than console output. A sleek color palette and kable styling to make your regression results look sharper than they are. Includes support for Partial Least Squares (PLS) regression via both the SVD and NIPALS algorithms, along with a unified interface for model fitting and fabulous LaTeX and console output formatting. See the package website at <https://finitesample.space/snazzier>.
This package provides functions for tabulating and summarising categorical variables. Most functions are designed to work with dataframes, and use the tidyverse idiom of taking the dataframe as the first argument so they work within pipelines. Equivalent functions that operate directly on vectors are also provided where it makes sense. This package aims to make exploratory data analysis involving categorical variables quicker, simpler and more robust.
Fitting models for, and simulation of, trend locally stationary wavelet (TLSW) time series models, which take account of time-varying trend and dependence structure in a univariate time series. The TLSW model, and its estimation, is described in McGonigle, Killick and Nunes (2022a) <doi:10.1111/jtsa.12643>, (2022b) <doi:10.1214/22-EJS2044>. New users will likely want to start with the TLSW function.
This package implements methods to fit Virtual Twins models (Foster et al. (2011) <doi:10.1002/sim.4322>) for identifying subgroups with differential effects in the context of clinical trials while controlling the probability of falsely detecting a differential effect when the conditional average treatment effect is uniform across the study population using parameter selection methods proposed in Wolf et al. (2022) <doi:10.1177/17407745221095855>.
Various functions to fit models for non-normal repeated measurements, such as Binary Random Effects Models with Two Levels of Nesting, Bivariate Beta-binomial Regression Models, Marginal Bivariate Binomial Regression Models, Cormack capture-recapture models, Continuous-time Hidden Markov Chain Models, Discrete-time Hidden Markov Chain Models, Changepoint Location Models using a Continuous-time Two-state Hidden Markov Chain, generalized nonlinear autoregression models, multivariate Gaussian copula models, generalized non-linear mixed models with one random effect, generalized non-linear mixed models using h-likelihood for one random effect, Repeated Measurements Models for Counts with Frailty or Serial Dependence, Repeated Measurements Models for Continuous Variables with Frailty or Serial Dependence, Ordinal Random Effects Models with Dropouts, marginal homogeneity models for square contingency tables, correlated negative binomial models with Kalman update. References include Lindsey's text books, JK Lindsey (2001) <isbn:10-0198508123> and JK Lindsey (1999) <isbn:10-0198505590>.
This package provides a fast, flexible, and comprehensive framework for quantitative text analysis in R. It provides functionality for corpus management, creating and manipulating tokens and ngrams, exploring keywords in context, forming and manipulating sparse matrices of documents by features and feature co-occurrences, analyzing keywords, computing feature similarities and distances, applying content dictionaries, applying supervised and unsupervised machine learning, visually representing text and text analyses, and more.
Enrich your ggplots with group-wise comparisons. This package provides an easy way to indicate if two groups are significantly different. Commonly this is shown by a bracket on top connecting the groups of interest which itself is annotated with the level of significance. The package provides a single layer that takes the groups for comparison and the test as arguments and adds the annotation to the plot.
Efficient C++ optimized functions for numerical and symbolic calculus. It includes basic symbolic arithmetic, tensor calculus, Einstein summing convention, fast computation of the Levi-Civita symbol and generalized Kronecker delta, Taylor series expansion, multivariate Hermite polynomials, accurate high-order derivatives, differential operators (Gradient, Jacobian, Hessian, Divergence, Curl, Laplacian) and numerical integration in arbitrary orthogonal coordinate systems: cartesian, polar, spherical, cylindrical, parabolic or user defined by custom scale factors.
This library lets you write interactive programs without callbacks or side-effects. Functional Reactive Programming (FRP) uses composable events and time-varying values to describe interactive systems as pure functions. Just like other pure functional code, functional reactive code is easier to get right on the first try, maintain, and reuse. Reflex is a fully-deterministic, higher-order FRP interface and an engine that efficiently implements that interface.
SPsimSeq uses a specially designed exponential family for density estimation to constructs the distribution of gene expression levels from a given real RNA sequencing data (single-cell or bulk), and subsequently simulates a new dataset from the estimated marginal distributions using Gaussian-copulas to retain the dependence between genes. It allows simulation of multiple groups and batches with any required sample size and library size.
Fast and automatic gradient tree boosting designed to avoid manual tuning and cross-validation by utilizing an information theoretic approach. This makes the algorithm adaptive to the dataset at hand; it is completely automatic, and with minimal worries of overfitting. Consequently, the speed-ups relative to state-of-the-art implementations can be in the thousands while mathematical and technical knowledge required on the user are minimized.
Fits linear or generalized linear regression models using Bayesian global-local shrinkage prior hierarchies as described in Polson and Scott (2010) <doi:10.1093/acprof:oso/9780199694587.003.0017>. Provides an efficient implementation of ridge, lasso, horseshoe and horseshoe+ regression with logistic, Gaussian, Laplace, Student-t, Poisson or geometric distributed targets using the algorithms summarized in Makalic and Schmidt (2016) <doi:10.48550/arXiv.1611.06649>.
This package implements methods for Bayesian analysis of State Space Models. Includes implementations of the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>.
Fits a variety of cure models using excess hazard modeling methodology such as the mixture model proposed by Phillips et al. (2002) <doi:10.1002/sim.1101> The Weibull distribution is used to represent the survival function of the uncured patients; Fits also non-mixture cure model such as the time-to-null excess hazard model proposed by Boussari et al. (2020) <doi:10.1111/biom.13361>.
This package provides a suite of routines for Clifford algebras, using the Map class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassmann algebra, are discussed. Vignettes presenting conformal geometric algebra, quaternions and split quaternions, dual numbers, and Lorentz transforms are included. The package follows disordR discipline.
Calculate the confidence interval and p value for change in C-statistic. The adjusted C-statistic is calculated by using formula as "Somers Dxy rank correlation"/2+0.5. The confidence interval was calculated by using the bootstrap method. The p value was calculated by using the Z testing method. Please refer to the article of Peter Ganz et al. (2016) <doi:10.1001/jama.2016.5951>.
This creates code names that a user can consider for their organizations, their projects, themselves, people in their organizations or projects, or whatever else. The user can also supply a numeric seed (and even a character seed) for maximum reproducibility. Use is simple and the code names produced come in various types too, contingent on what the user may be desiring as a code name or nickname.
This package provides tools for penalized estimation of flexible hidden Markov models for time series of counts w/o the need to specify a (parametric) family of distributions. These include functions for model fitting, model checking, and state decoding. For details, see Adam, T., Langrock, R., and Weià , C.H. (2019): Penalized Estimation of Flexible Hidden Markov Models for Time Series of Counts. <arXiv:1901.03275>.
Motifs within biological sequences show a significant role. This package utilizes a user-defined threshold value (window size and similarity) to create consensus segments or motifs through local alignment of dynamic programming with gap and it calculates the frequency of each identified motif, offering a detailed view of their prevalence within the dataset. It allows for thorough exploration and understanding of sequence patterns and their biological importance.
This package provides a series of functions which aid in both simulating and determining the properties of finite, discrete-time, discrete state markov chains. Two functions (DTMC, MultDTMC) produce n iterations of a Markov Chain(s) based on transition probabilities and an initial distribution. The function FPTime determines the first passage time into each state. The function statdistr determines the stationary distribution of a Markov Chain.
It is important to ensure that sensitive data is protected. This straightforward package is aimed at the end-user. Strong RSA encryption using a public/private key pair is used to encrypt data frame or tibble columns. A public key can be shared to allow others to encrypt data to be sent to you. This is particularly aimed a healthcare settings so patient data can be pseudonymised.