Utilities for Bratteli graphs. A tree is an example of a Bratteli graph. The package provides a function which generates a LaTeX file that renders the given Bratteli graph. It also provides functions to compute the dimensions of the vertices, the intrinsic kernels and the intrinsic distances. Intrinsic kernels and distances were introduced by Vershik (2014) <doi:10.1007/s10958-014-1958-0>.
This package provides functionality to automatically detect groove locations via a Bayesian changepoint detection method to be used in the data preprocessing step of forensic bullet matching algorithms. The methods in this package are based on those in Stephens (1994) <doi:10.2307/2986119>. Bayesian changepoint detection will simply be an option in the function from the package bulletxtrctr which identifies the groove locations.
This package creates project specific directory and file templates that are written to a .Rprofile file. Upon starting a new R session, these templates can be used to streamline the creation of new directories that are standardized to the user's preferences and can include the initiation of a git repository, an RStudio R project, and project-local dependency management with the renv package.
Several authors have proposed methods for constructing simultaneous confidence intervals for multinomial proportions. The package implements seven classical approachesâ Wilson, Quesenberry and Hurst, Goodman, Wald (with and without continuity correction), Fitzpatrick and Scott, and Sison and Glazâ along with Bayesian methods based on Dirichlet models. Both equal and unequal Dirichlet priors are supported, providing a broad framework for inference, data analysis, and sensitivity evaluation.
This package provides a local haplotyping visualization toolbox to capture major patterns of co-inheritance between clusters of linked variants, whilst connecting findings to phenotypic and demographic traits across individuals. crosshap enables users to explore and understand genomic variation across a trait-associated region. For an example of successful local haplotype analysis, see Marsh et al. (2022) <doi:10.1007/s00122-022-04045-8>.
Allows to generate colors from palettes defined in the colormap module of Node.js'. (see <https://github.com/bpostlethwaite/colormap> for more information). In total it provides 44 distinct palettes made from sequential and/or diverging colors. In addition to the pre defined palettes you can also specify your own set of colors. There are also scale functions that can be used with ggplot2'.
Responsive and modern HTML card essentials for shiny applications and dashboards. This novel card component in Bootstrap provides a flexible and extensible content container with multiple variants and options for building robust R based apps e.g for graph build or machine learning projects. The features rely on a combination of JQuery <https://jquery.com> and CSS styles to improve the card functionality.
This package contains a function called dmur() which accepts four parameters like possible values, probabilities of the values, selling cost and preparation cost. The dmur() function generates various numeric decision parameters like MEMV (Maximum (optimum) expected monitory value), best choice, EPPI (Expected profit with perfect information), EVPI (Expected value of the perfect information), EOL (Expected opportunity loss), which facilitate effective decision-making.
Simple Principal Components Analysis (PCA) and (Multiple) Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). This package provides S4 classes and methods to compute, extract, summarize and visualize results of multivariate data analysis. It also includes methods for partial bootstrap validation described in Greenacre (1984, ISBN: 978-0-12-299050-2) and Lebart et al. (2006, ISBN: 978-2-10-049616-7).
Go beyond standard probability distributions such as the Normal or Exponential by combining, shifting, maximizing, and otherwise transforming distributions with simple, verb-based functions. Provides easy access to a broader space of distributions more representative of real-world systems such as river flows or insurance claims. Part of the probaverse framework of packages to support advanced statistical modeling and simulations with an intuitive workflow.
This package provides a genetic algorithm for finding variable subsets in high dimensional data with high prediction performance. The genetic algorithm can use ordinary least squares (OLS) regression models or partial least squares (PLS) regression models to evaluate the prediction power of variable subsets. By supporting different cross-validation schemes, the user can fine-tune the tradeoff between speed and quality of the solution.
This package provides density, distribution and random generation functions for the Linear Ballistic Accumulation (LBA) model, a widely used choice response time model in cognitive psychology. The package supports model specifications, parameter estimation, and likelihood computation, facilitating simulation and statistical inference for LBA-based experiments. For details on the LBA model, see Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>.
This package provides a comprehensive suite of portfolio spanning tests for asset pricing, such as Huberman and Kandel (1987) <doi:10.1111/j.1540-6261.1987.tb03917.x>, Gibbons et al. (1989) <doi:10.2307/1913625>, Kempf and Memmel (2006) <doi:10.1007/BF03396737>, Pesaran and Yamagata (2024) <doi:10.1093/jjfinec/nbad002>, and Gungor and Luger (2016) <doi:10.1080/07350015.2015.1019510>.
Proxy forward modelling for sediment archived climate proxies such as Mg/Ca, d18O or Alkenones. The user provides a hypothesised "true" past climate, such as output from a climate model, and details of the sedimentation rate and sampling scheme of a sediment core. Sedproxy returns simulated proxy records. Implements the methods described in Dolman and Laepple (2018) <doi:10.5194/cp-14-1851-2018>.
This package provides a collection of functions for automatically creating Stan code for transition diagnostic classification models (TDCMs) as they are defined by Madison and Bradshaw (2018) <DOI:10.1007/s11336-018-9638-5>. This package supports automating the creation of Stan code for TDCMs, fungible TDCMs (i.e., TDCMs with item parameters constrained to be equal across all items), and multi-threaded TDCMs.
Fits hierarchical models of animal abundance and occurrence to data collected using survey methods such as point counts, site occupancy sampling, distance sampling, removal sampling, and double observer sampling. Parameters governing the state and observation processes can be modeled as functions of covariates. References: Kellner et al. (2023) <doi:10.1111/2041-210X.14123>, Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute. These are the provided Ray AI libraries:
Data: Scalable datasets for ML;
Train: Distributed training;
Tune: Scalable hyperparameter tuning;
RLlib: Scalable reinforcement learning;
Serve: Scalable and programmable serving.
This package provides functions for bipartite network rewiring through N consecutive switching steps and for the computation of the minimal number of switching steps to be performed in order to maximise the dissimilarity with respect to the original network. It includes functions for the analysis of the introduced randomness across the switching steps and several other routines to analyse the resulting networks and their natural projections.
This package provides a a transcriptomic-based framework to dissect cell communication in a global manner. It integrates an original expert-curated database of ligand-receptor interactions taking into account multiple subunits expression. Based on transcriptomic profiles (gene expression), this package computes communication scores between cells and provides several visualization modes that can be helpful to dig into cell-cell interaction mechanism and extend biological knowledge.
Polytect is an advanced computational tool designed for the analysis of multi-color digital PCR data. It provides automatic clustering and labeling of partitions into distinct groups based on clusters first identified by the flowPeaks algorithm. Polytect is particularly useful for researchers in molecular biology and bioinformatics, enabling them to gain deeper insights into their experimental results through precise partition classification and data visualization.
Interacting with binary files can be difficult because R's types are a subset of what is generally supported by C'. This package provides a suite of functions for reading and writing binary data (with files, connections, and raw vectors) using C type descriptions. These functions convert data between C types and R types while checking for values outside the type limits, NA values, etc.
Nonparametric kernel density estimation, bandwidth selection, and other utilities for analyzing directional data. Implements the estimator in Bai, Rao and Zhao (1987) <doi:10.1016/0047-259X(88)90113-3>, the cross-validation bandwidth selectors in Hall, Watson and Cabrera (1987) <doi:10.1093/biomet/74.4.751> and the plug-in bandwidth selectors in Garcà a-Portugués (2013) <doi:10.1214/13-ejs821>.
This package provides functions and data supporting the Eco-Stats text (Warton, 2022, Springer), and solutions to exercises. Functions include tools for using simulation envelopes in diagnostic plots, and a function for diagnostic plots of multivariate linear models. Datasets mentioned in the package are included here (where not available elsewhere) and there is a vignette for each chapter of the text with solutions to exercises.
This package provides tools to analyze R source code and detect function definitions and their internal dependencies across multiple files. Creates interactive network visualizations using visNetwork to display function call relationships, with detailed tooltips showing function arguments, return values, and documentation. Supports both individual files and directory-based analysis with automatic file detection. Useful for understanding code structure, identifying dependencies, and documenting R projects.