The A()
function calculates the A statistic, a nonparametric measure of effect size for two independent groups thatâ s also known as the probability of superiority (Ruscio, 2008), along with its standard error and a confidence interval constructed using bootstrap methods (Ruscio & Mullen, 2012). Optional arguments can be specified to calculate variants of the A statistic developed for other research designs (e.g., related samples, more than two independent groups or related samples; Ruscio & Gera, 2013). <DOI: 10.1037/1082-989X.13.1.19>. <DOI: 10.1080/00273171.2012.658329>. <DOI: 10.1080/00273171.2012.738184>.
This package provides a collection of functions to extract citation information from R packages and to deal with files in citation file format (<https://citation-file-format.github.io/>), extending the functionality already provided by the citation()
function in the utils package.
Have you ever been tempted to create roxygen2'-style documentation comments for one of your functions that was not part of one of your packages (yet)? This is exactly what this package is about: running roxygen2 on (chunks of) a single code file.
This package provides functions for the Bayesian analysis of extreme value models, using Markov chain Monte Carlo methods. Allows the construction of both uninformative and informed prior distributions for common statistical models applied to extreme event data, including the generalized extreme value distribution.
An interface to the core Familias functions which are programmed in C++. The implementation is described in Egeland, Mostad and Olaisen (1997) <doi:10.1016/S1355-0306(97)72202-0> and Simonsson and Mostad (2016) <doi:10.1016/j.fsigen.2016.04.005>.
Applications to visualization, outlier detection and classification. Software companion for Elà as, Antonio, Jiménez, Raúl, Paganoni, Anna M. and Sangalli, Laura M., (2022), "Integrated Depth for Partially Observed Functional Data". Journal of Computational and Graphical Statistics. <doi:10.1080/10618600.2022.2070171>.
Statistical analysis of monthly background checks of gun purchases for the New York Times story "What Drives Gun Sales: Terrorism, Obama and Calls for Restrictions" at <http://www.nytimes.com/interactive/2015/12/10/us/gun-sales-terrorism-obama-restrictions.html?> is provided.
Fit joint models of survival and multivariate longitudinal data. The longitudinal data is specified by generalised linear mixed models. The joint models are fit via maximum likelihood using an approximate expectation maximisation algorithm. Bernhardt (2015) <doi:10.1016/j.csda.2014.11.011>.
This package provides functions that make it easy to reveal ggplot2 graphs incrementally. The functions take a plot produced with ggplot2 and return a list of plots showing data incrementally by panels, layers, groups, the values in an axis or any arbitrary aesthetic.
An extension of ggplot2 to provide quiver plots to visualise vector fields. This functionality is implemented using a geom to produce a new graphical layer, which allows aesthetic options. This layer can be overlaid on a map to improve visualisation of mapped data.
This package provides a syntax to create and combine Gaussian process kernels in greta'. You can then them to define either full rank or sparse Gaussian processes. This is an extension to the greta software, Golding (2019) <doi:10.21105/joss.01601>.
Enable user to find the IP addresses which are used as VPN anonymizer, open proxies, web proxies and Tor exits. The package lookup the proxy IP address from IP2Proxy BIN Data file. You may visit <https://lite.ip2location.com> for free database download.
This package provides string similarity calculations inspired by the Python thefuzz package. Compare strings by edit distance, similarity ratio, best matching substring, ordered token matching and set-based token matching. A range of edit distance measures are available thanks to the stringdist package.
This package implements the computation of discrepancy statistics summarizing differences between the density of imputed and observed values and the construction of weights to balance covariates that are part of the missing data mechanism as described in Marbach (2021) <arXiv:2107.05427>
.
This package contains data from the May 2020 Occupational Employment and Wage Statistics data release from the U.S. Bureau of Labor Statistics. The dataset covers employment and wages across occupations, industries, states, and at the national level. Metropolitan data is not included.
This package contains data from the May 2021 Occupational Employment and Wage Statistics data release from the U.S. Bureau of Labor Statistics. The dataset covers employment and wages across occupations, industries, states, and at the national level. Metropolitan data is not included.
This package provides methods for reducing the number of features within a data set. See Bauer JO (2021) <doi:10.1145/3475827.3475832> and Bauer JO, Drabant B (2021) <doi:10.1016/j.jmva.2021.104754> for more information on principal loading analysis.
The sinaplot is a data visualization chart suitable for plotting any single variable in a multiclass data set. It is an enhanced jitter strip chart, where the width of the jitter is controlled by the density distribution of the data within each class.
Construct various types of space-filling designs, including Latin hypercube designs, clustering-based designs, maximin designs, maximum projection designs, and uniform designs (Joseph 2016 <doi:10.1080/08982112.2015.1100447>). It also offers the option to optimize designs based on user-defined criteria.
Simplifies regression tests by comparing objects produced by test code with earlier versions of those same objects. If objects are unchanged the tests pass, otherwise execution stops with error details. If in interactive mode, tests can be reviewed through the provided interactive environment.
Convert, validate, format and elegantly print geographic coordinates and waypoints (paired latitude and longitude values) in decimal degrees, degrees and minutes, and degrees, minutes and seconds using high performance C++ code to enable rapid conversion and formatting of large coordinate and waypoint datasets.
Read and write XES Files to create event log objects used by the bupaR
framework. XES (Extensible Event Stream) is the `IEEE` standard for storing and sharing event data (see <http://standards.ieee.org/findstds/standard/1849-2016.html> for more info).
Borealis is an R library performing outlier analysis for count-based bisulfite sequencing data. It detectes outlier methylated CpG
sites from bisulfite sequencing (BS-seq). The core of Borealis is modeling Beta-Binomial distributions. This can be useful for rare disease diagnoses.
Doscheda focuses on quantitative chemoproteomics used to determine protein interaction profiles of small molecules from whole cell or tissue lysates using Mass Spectrometry data. The package provides a shiny application to run the pipeline, several visualisations and a downloadable report of an experiment.