Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. The ggscidca package adds coloured bars of discriminant relevance to the traditional decision curve. Improved practicality and aesthetics. This method was described by Balachandran VP (2015) <doi:10.1016/S1470-2045(14)71116-7>.
Used for analyzing immune responses and predicting vaccine efficacy using machine learning and advanced data processing techniques. Immunaut integrates both unsupervised and supervised learning methods, managing outliers and capturing immune response variability. It performs multiple rounds of predictive model testing to identify robust immunogenicity signatures that can predict vaccine responsiveness. The platform is designed to handle high-dimensional immune data, enabling researchers to uncover immune predictors and refine personalized vaccination strategies across diverse populations.
Collection of functions for fast manipulation, handling, and analysis of large-scale networks based on family and social data. Functions are utility functions used to manipulate data in three "formats": sparse adjacency matrices, pedigree trio family data, and pedigree family data. When possible, the functions should be able to handle millions of data points quickly for use in combination with data from large public national registers and databases. Kenneth Lange (2003, ISBN:978-8181281135).
This package provides an interface to the PubChem database via the PUG REST <https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest> and PUG View <https://pubchem.ncbi.nlm.nih.gov/docs/pug-view> services. This package allows users to automatically access chemical and biological data from PubChem', including compounds, substances, assays, and various other data types. Functions are available to retrieve data in different formats, perform searches, and access detailed annotations.
Procrustes matching of the posterior samples of person and item latent positions from latent space item response models. The methods implemented in this package are based on work by Borg, I., Groenen, P. (1997, ISBN:978-0-387-94845-4), Jeon, M., Jin, I. H., Schweinberger, M., Baugh, S. (2021) <doi:10.1007/s11336-021-09762-5>, and Andrew, D. M., Kevin M. Q., Jong Hee Park. (2011) <doi:10.18637/jss.v042.i09>.
This package provides a spatio-dynamic modelling package that focuses on three characteristic wetland plant communities in a semiarid Mediterranean wetland in response to hydrological pressures from the catchment. The package includes the data on watershed hydrological pressure and the initial raster maps of plant communities but also allows for random initial distribution of plant communities. For more detailed info see: Martinez-Lopez et al. (2015) <doi:10.1016/j.ecolmodel.2014.11.024>.
This package performs canonical correlation for survey data, including multiple tests of significance for secondary canonical correlations. A key feature of this package is that it incorporates survey data structure directly in a novel test of significance via a sequence of simple linear regression models on the canonical variates. See reference - Cruz-Cano, Cohen, and Mead-Morse (2024) "Canonical Correlation Analysis of Survey data: the SurveyCC R package" The R Journal under review.
On discrete data spectral analysis is performed by Fourier and Hilbert transforms as well as with model based analysis called Lomb-Scargle method. Fragmented and irregularly spaced data can be processed in almost all methods. Both, FFT as well as LOMB methods take multivariate data and return standardized PSD. For didactic reasons an analytical approach for deconvolution of noise spectra and sampling function is provided. A user friendly interface helps to interpret the results.
This package provides a set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.
This package implements the Smoothness-Penalized Deconvolution method for estimating a probability density under measurement error of Kent and Ruppert (2023) <doi:10.1080/01621459.2023.2259028>. The estimator is formed by computing a histogram of the error-contaminated data, and then finding an estimate that minimizes a reconstruction error plus a smoothness-inducing penalty term. The primary function, sped(), takes the data and error distribution, and returns the estimator as a function.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. Tracer (<https://github.com/beast-dev/tracer/>) is a GUI tool to parse and analyze the files generated by BEAST2'. This package provides a way to parse and analyze BEAST2 input files without active user input, but using R function calls instead.
Fits a wide variety of multivariate spatio-temporal models with simultaneous and lagged interactions among variables (including vector autoregressive spatio-temporal ('VAST') dynamics) for areal, continuous, or network spatial domains. It includes time-variable, space-variable, and space-time-variable interactions using dynamic structural equation models ('DSEM') as expressive interface, and the mgcv package to specify splines via the formula interface. See Thorson et al. (2025) <doi:10.1111/geb.70035> for more details.
Extendable R6 file comparison classes, including a shiny app for combining the comparison functionality into a file comparison application. The package idea originates from pharma companies drug development processes, where statisticians and statistical programmers need to review and compare different versions of the same outputs and datasets. The package implementation itself is not tied to any specific industry and can be used in any context for easy file comparisons between different file version sets.
The CEMiTool package unifies the discovery and the analysis of coexpression gene modules in a fully automatic manner, while providing a user-friendly html report with high quality graphs. Our tool evaluates if modules contain genes that are over-represented by specific pathways or that are altered in a specific sample group. Additionally, CEMiTool is able to integrate transcriptomic data with interactome information, identifying the potential hubs on each network.
This package provides reference data required for ewce. Expression Weighted Celltype Enrichment (EWCE) is used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.
This package is to find SNV/Indel differences between two bam files with near relationship in a way of pairwise comparison through each base position across the genome region of interest. The difference is inferred by Fisher test and euclidean distance, the input of which is the base count (A,T,G,C) in a given position and read counts for indels that span no less than 2bp on both sides of indel region.
This package contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library. All models return coda mcmc objects that can then be summarized using the coda package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
Analyse single case analyses against a control group. Its purpose is to provide a flexible, with good power and low first type error approach that can manage at the same time controls and patient's data. The use of Bayesian statistics allows to test both the alternative and null hypothesis. Scandola, M., & Romano, D. (2020, August 3). <doi:10.31234/osf.io/sajdq> Scandola, M., & Romano, D. (2021). <doi:10.1016/j.neuropsychologia.2021.107834>.
This package performs sensitivity analysis for the sharp null, attributable effects, and weak nulls in matched studies with continuous exposures and binary or continuous outcomes as described in Zhang, Small, Heng (2024) <doi:10.48550/arXiv.2401.06909> and Zhang, Heng (2024) <doi:10.48550/arXiv.2409.12848>. Two of the functions require installation of the Gurobi optimizer. Please see <https://docs.gurobi.com/current/#refman/ins_the_r_package.html> for guidance.
This package provides a comprehensive toolkit for analyzing microscopy data output from QuPath software. Provides functionality for automated data processing, metadata extraction, and statistical analysis of imaging results. The methodology implemented in this package is based on Labrosse et al. (2024) <doi:10.1016/j.xpro.2024.103274> "Protocol for quantifying drug sensitivity in 3D patient-derived ovarian cancer models", which describes the complete workflow for drug sensitivity analysis in patient-derived cancer models.
This package provides tools to estimate the genome size of polyploid species using k-mer frequencies. This package includes functions to process k-mer frequency data and perform genome size estimation by fitting k-mer frequencies with a normal distribution model. It supports handling of complex polyploid genomes and offers various options for customizing the estimation process. The basic method findGSE is detailed in Sun, Hequan, et al. (2018) <doi:10.1093/bioinformatics/btx637>.
This package provides a minimal set of routines to calculate the Grantham distance <doi:10.1126/science.185.4154.862>. The Grantham distance attempts to provide a proxy for the evolutionary distance between two amino acids based on three key chemical properties: composition, polarity and molecular volume. In turn, evolutionary distance is used as a proxy for the impact of missense mutations. The higher the distance, the more deleterious the substitution is expected to be.
Set of tools for reading, writing and transforming spatial and seasonal data, model selection and specific statistical tests for ecologists. It includes functions to interpolate regular positions of points between landmarks, to discretize polylines into regular point positions, link distant observations to points and convert a bounding box in a spatial object. It also provides miscellaneous functions for field ecologists such as spatial statistics and inference on diversity indexes, writing data.frame with Chinese characters.
Users can build and test customized quantitative trading strategies. Some quantitative trading strategies are already implemented, e.g. various moving-average filters with trend following approaches. The implemented class called "Strategy" allows users to access several methods to analyze performance figures, plots and backtest the strategies. Furthermore, custom strategies can be added, a generic template is available. The custom strategies require a certain input and output so they can be called from the Strategy-constructor.