Calculate the confidence interval and p value for change in C-statistic. The adjusted C-statistic is calculated by using formula as "Somers Dxy rank correlation"/2+0.5. The confidence interval was calculated by using the bootstrap method. The p value was calculated by using the Z testing method. Please refer to the article of Peter Ganz et al. (2016) <doi:10.1001/jama.2016.5951>.
This package provides a series of functions which aid in both simulating and determining the properties of finite, discrete-time, discrete state markov chains. Two functions (DTMC, MultDTMC) produce n iterations of a Markov Chain(s) based on transition probabilities and an initial distribution. The function FPTime determines the first passage time into each state. The function statdistr determines the stationary distribution of a Markov Chain.
Motifs within biological sequences show a significant role. This package utilizes a user-defined threshold value (window size and similarity) to create consensus segments or motifs through local alignment of dynamic programming with gap and it calculates the frequency of each identified motif, offering a detailed view of their prevalence within the dataset. It allows for thorough exploration and understanding of sequence patterns and their biological importance.
This package contains elementary tools for analysis of common epidemiological problems, ranging from sample size estimation, through 2x2 contingency table analysis and basic measures of agreement (kappa, sensitivity/specificity). Appropriate print and summary statements are also written to facilitate interpretation wherever possible. Source code is commented throughout to facilitate modification. The target audience includes advanced undergraduate and graduate students in epidemiology or biostatistics courses, and clinical researchers.
Calculates the (approximate) effective number of clusters for a regression model, as described in Carter, Schnepel, and Steigerwald (2017) <doi:10.1162/REST_a_00639>. The effective number of clusters is a statistic to assess the reliability of asymptotic inference when sampling or treatment assignment is clustered. Methods are implemented for stats::lm(), plm::plm(), and fixest::feols(). There is also a formula method.
It is important to ensure that sensitive data is protected. This straightforward package is aimed at the end-user. Strong RSA encryption using a public/private key pair is used to encrypt data frame or tibble columns. A public key can be shared to allow others to encrypt data to be sent to you. This is particularly aimed a healthcare settings so patient data can be pseudonymised.
This package provides tools for fitting statistical network models to dynamic network data. Can be used for fitting both dynamic network actor models ('DyNAMs') and relational event models ('REMs'). Stadtfeld, Hollway, and Block (2017a) <doi:10.1177/0081175017709295>, Stadtfeld, Hollway, and Block (2017b) <doi:10.1177/0081175017733457>, Stadtfeld and Block (2017) <doi:10.15195/v4.a14>, Hoffman et al. (2020) <doi:10.1017/nws.2020.3>.
Vapor pressure, relative humidity, absolute humidity, specific humidity, and mixing ratio are commonly used water vapor measures in meteorology. This R package provides functions for calculating saturation vapor pressure (hPa), partial water vapor pressure (Pa), relative humidity (%), absolute humidity (kg/m^3), specific humidity (kg/kg), and mixing ratio (kg/kg) from temperature (K) and dew point (K). Conversion functions between humidity measures are also provided.
This package provides a system for identifying diseases or events from healthcare databases and preparing data for epidemiological studies. It includes capabilities not supported by SQL', such as matching strings by stringr style regular expressions, and can compute comorbidity scores (Quan et al. (2005) <doi:10.1097/01.mlr.0000182534.19832.83>) directly on a database server. The implementation is based on dbplyr with full tidyverse compatibility.
Framework for building modular Monte Carlo risk analysis models. It extends the capabilities of mc2d to facilitate working with multiple risk pathways, variates and scenarios. It provides tools to organize risk analysis in independent flexible modules, perform multivariate Monte Carlo node operations, automate the creation of Monte Carlo nodes and visualize risk analysis models. For more details see Ciria (2025) <https://nataliaciria.github.io/mcmodule/articles/mcmodule>.
Package for processing downloaded MODIS Surface reflectance Product HDF files. Specifically, MOD09 surface reflectance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile.
Shiny web application to run meta-analyses. Essentially a graphical front-end to package meta for R. Can be useful as an educational tool, and for quickly analyzing and sharing meta-analyses. Provides output to quickly fill in GRADE (Grading of Recommendations, Assessment, Development and Evaluations) Summary-of-Findings tables. Importantly, it allows further processing of the results inside R, in case more specific analyses are needed.
Two pipelines are provided to study microbial turnover along a gradient, including the beta diversity and microbial abundance change. The betaturn class consists of the steps of community dissimilarity matrix generation, matrix conversion, differential test and visualization. The workflow of taxaturn class includes the taxonomic abundance calculation, abundance transformation, abundance change summary, statistical analysis and visualization. Multiple statistical approaches can contribute to the analysis of microbial turnover.
This package provides an interface to connect R with the <https://github.com/IDEMSInternational/open-app-builder> OpenAppBuilder platform, enabling users to retrieve and work with user and notification data for analysis and processing. It is designed for developers and analysts to seamlessly integrate data from OpenAppBuilder into R workflows via a Postgres database connection, allowing direct querying and import of app data into R.
Toolkit for fitting point process models with sequences of LASSO penalties ("regularisation paths"), as described in Renner, I.W. and Warton, D.I. (2013) <doi:10.1111/j.1541-0420.2012.01824.x>. Regularisation paths of Poisson point process models or area-interaction models can be fitted with LASSO, adaptive LASSO or elastic net penalties. A number of criteria are available to judge the bias-variance tradeoff.
Process and summarize DAS data files. These files are typically, but do not have to be DAS <https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-305.PDF> data produced by the Southwest Fisheries Science Center (SWFSC) program WinCruz'. This package standardizes and streamlines basic DAS data processing, and includes a PDF with the DAS data format requirements expected by the package.
Create a hexagon tile map display from spatial polygons. Each polygon is represented by a hexagon tile, placed as close to it's original centroid as possible, with a focus on maintaining spatial relationship to a focal point. Developed to aid visualisation and analysis of spatial distributions across Australia, which can be challenging due to the concentration of the population on the coast and wide open interior.
This package provides predictive accuracy tools to evaluate time-to-event survival models. This includes calculating the concordance probability estimate that incorporates the follow-up time for a particular study developed by Devlin, Gonen, Heller (2020)<doi:10.1007/s10985-020-09503-3>. It also evaluates the concordance probability estimate for nested Cox proportional hazards models using a projection-based approach by Heller and Devlin (under review).
Tensor-train is a compact representation for higher-order tensors. Some algorithms for performing tensor-train decomposition are available such as TT-SVD, TT-WOPT, and TT-Cross. For the details of the algorithms, see I. V. Oseledets (2011) <doi:10.1137/090752286>, Yuan Longao, et al (2017) <doi:10.48550/arXiv.1709.02641>, I. V. Oseledets (2010) <doi:10.1016/j.laa.2009.07.024>.
This package provides tools for converting data from complex or irregular layouts to a columnar structure. For example, tables with multilevel column or row headers, or spreadsheets. Header and data cells are selected by their contents and position, as well as formatting and comments where available, and are associated with one other by their proximity in given directions. Functions for data frames and HTML tables are provided.
Calculates risk differences (or prevalence differences for cross-sectional data) using generalized linear models with automatic link function selection. Provides robust model fitting with fallback methods, support for stratification and adjustment variables, inverse probability of treatment weighting (IPTW) for causal inference, and publication-ready output formatting. Handles model convergence issues gracefully and provides confidence intervals using multiple approaches. Methods are based on approaches described in Mark W. Donoghoe and Ian C. Marschner (2018) "logbin: An R Package for Relative Risk Regression Using the Log-Binomial Model" <doi:10.18637/jss.v086.i09> for robust GLM fitting, Peter C. Austin (2011) "An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies" <doi:10.1080/00273171.2011.568786> for IPTW methods, and standard epidemiological methods for risk difference estimation as described in Kenneth J. Rothman, Sander Greenland and Timothy L. Lash (2008, ISBN:9780781755641) "Modern Epidemiology".
This package offers functions to process multiple ChIP-seq BAM files and detect allele-specific events. It computes allele counts at individual variants (SNPs/SNVs), implements extensive QC (quality control) steps to remove problematic variants, and utilizes a Bayesian framework to identify statistically significant allele-specific events. BaalChIP is able to account for copy number differences between the two alleles, a known phenotypical feature of cancer samples.
The first day of any MMWR week is Sunday. MMWR week numbering is sequential beginning with 1 and incrementing with each week to a maximum of 52 or 53. MMWR week #1 of an MMWR year is the first week of the year that has at least four days in the calendar year. This package provides functionality to convert dates to MMWR day, week, and year and the reverse.
Phylogenetic clustering (phyloclustering) is an evolutionary continuous time Markov Chain model-based approach to identify population structure from molecular data without assuming linkage equilibrium. The package phyclust provides a convenient implementation of phyloclustering for DNA and SNP data, capable of clustering individuals into subpopulations and identifying molecular sequences representative of those subpopulations. It is designed in C for performance and interfaced with R for visualization.