Models time-to-event data from interval-censored screening studies. It accounts for latent prevalence at baseline and incorporates misclassification due to imperfect test sensitivity. For usage details, see the package vignette ("BayesPIM_intro"). Further details can be found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024), "A Bayesian prevalence-incidence mixture model for screening outcomes with misclassification", <doi:10.48550/arXiv.2412.16065>.
This package provides tools to facilitate the access and processing of data from the Central Bank of Brazil API. The package allows users to retrieve economic and financial data, transforming them into usable tabular formats for further analysis. The data is obtained from the Central Bank of Brazil API: <https://api.bcb.gov.br/dados/serie/bcdata.sgs.series_code/dados?formato=json&dataInicial=start_date&dataFinal=end_date>.
Finds the largest possible regression model that will still converge for various types of regression analyses (including mixed models and generalized additive models) and then optionally performs stepwise elimination similar to the forward and backward effect-selection methods in SAS, based on the change in log-likelihood or its significance, Akaike's Information Criterion, the Bayesian Information Criterion, the explained deviance, or the F-test of the change in R².
An R interface to Cheetah Grid', a high-performance JavaScript table widget. cheetahR allows users to render millions of rows in just a few milliseconds, making it an excellent alternative to other R table widgets. The package wraps the Cheetah Grid JavaScript functions and makes them readily available for R users. The underlying grid implementation is based on Cheetah Grid <https://github.com/future-architect/cheetah-grid>.
Fast and user-friendly estimation of generalized linear models with multiple fixed effects and cluster the standard errors. The method to obtain the estimated fixed-effects coefficients is based on Stammann (2018) <doi:10.48550/arXiv.1707.01815>, Gaure (2013) <doi:10.1016/j.csda.2013.03.024>, Berge (2018) <https://ideas.repec.org/p/luc/wpaper/18-13.html>, and Correia et al. (2020) <doi: 10.1177/1536867X20909691>.
This package provides a one-stop shop for intuitive and dependency-free color and palette creation and modification. Includes palettes and functionality from popular packages such as viridis', RColorBrewer', and base R grDevices', as well as ggplot2 plot bindings. Users can generate perceptually uniform and colorblind-friendly palettes, adjust palettes in HSL and RGB color spaces, map color gradients to value ranges, and create color-generating functions.
Fits a state-space mass-balance model for marine ecosystems, which implements dynamics derived from Ecopath with Ecosim ('EwE') <https://ecopath.org/> while fitting to time-series of fishery catch, biomass indices, age-composition samples, and weight-at-age data. Ecostate fits biological parameters (e.g., equilibrium mass) and measurement parameters (e.g., catchability coefficients) jointly with residual variation in process errors, and can include Bayesian priors for parameters.
The nonparametric trend and its derivatives in equidistant time series (TS) with long-memory errors can be estimated. The estimation is conducted via local polynomial regression using an automatically selected bandwidth obtained by a built-in iterative plug-in algorithm or a bandwidth fixed by the user. The smoothing methods of the package are described in Letmathe, S., Beran, J. and Feng, Y., (2023) <doi:10.1080/03610926.2023.2276049>.
The goal of this package is to provide an improved version of WA-PLS (Weighted Averaging Partial Least Squares) by including the tolerances of taxa and the frequency of the sampled climate variable. This package also provides a way of leave-out cross-validation that removes both the test site and sites that are both geographically close and climatically close for each cycle, to avoid the risk of pseudo-replication.
This package provides functions for converting decimals to a matrix of numerators and denominators or a character vector of fractions. Supports mixed or improper fractions, finding common denominators for vectors of fractions, limiting denominators to powers of ten, and limiting denominators to a maximum value. Also includes helper functions for finding the least common multiple and greatest common divisor for a vector of integers. Implemented using C++ for maximum speed.
Integrating applied psychological and psychometric methods into geographical analysis. With the emergence of geo-referenced questionnaires, spatially explicit psychological and psychometric methods can offer a geographically contextualised approach that reflects latent traits and processes at a more local scale, leading to more tailored research and decision-making processes. The implemented methods include Geographically Weighted Cronbach's alpha and its bandwidth selection. See Zhang & Li (2025) <doi:10.1111/gean.70021>.
Hedgehog will eat all your bugs. Hedgehog is a property-based testing package in the spirit of QuickCheck'. With Hedgehog', one can test properties of their programs against randomly generated input, providing far superior test coverage compared to unit testing. One of the key benefits of Hedgehog is integrated shrinking of counterexamples, which allows one to quickly find the cause of bugs, given salient examples when incorrect behaviour occurs.
To test whether the missing data mechanism, in a set of incompletely observed data, is one of missing completely at random (MCAR). For detailed description see Jamshidian, M. Jalal, S., and Jansen, C. (2014). "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)", Journal of Statistical Software, 56(6), 1-31. <https://www.jstatsoft.org/v56/i06/> <doi:10.18637/jss.v056.i06>.
This package provides common components (classes, methods, documentation) for packages that conduct meta-analytic corrections and sensitivity analyses for within-study and/or across-study biases in meta-analysis. See the packages PublicationBias', phacking', and multibiasmeta'. These package implement methods described in, respectively: Mathur & VanderWeele (2020) <doi:10.31219/osf.io/s9dp6>; Mathur (2022) <doi:10.31219/osf.io/ezjsx>; Mathur (2022) <doi:10.31219/osf.io/u7vcb>.
Supports the generation of parallelogram, equilateral triangle, regular hexagon, isosceles trapezoid, Koch snowflake, hexaflake', Sierpinski triangle, Sierpinski carpet and Sierpinski trapezoid mazes via TurtleGraphics'. Mazes are generated by the recursive method: the domain is divided into sub-domains in which mazes are generated, then dividing lines with holes are drawn between them, see J. Buck, Recursive Division, <http://weblog.jamisbuck.org/2011/1/12/maze-generation-recursive-division-algorithm>.
Calculate Plant Stress Response Index (PSRI) from time-series germination data with optional radicle vigor integration. Built on the methodological foundation of the Osmotic Stress Response Index (OSRI) framework developed by Walne et al. (2020) <doi:10.1002/agg2.20087>. Provides clean, direct PSRI calculations suitable for agricultural research and statistical analysis. Note: This package implements methodology currently under peer review. Please contact the author before publication using this approach.
Create phantom variables, which are variables that were not observed, for the purpose of sensitivity analyses for structural equation models. The package makes it easier for a user to test different combinations of covariances between the phantom variable(s) and observed variables. The package may be used to assess a model's or effect's sensitivity to temporal bias (e.g., if cross-sectional data were collected) or confounding bias.
This package provides a collection of utilities and ggplot2 extensions to assist with visualisations in genomic epidemiology. This includes the phylepic chart, a visual combination of a phylogenetic tree and a matched epidemic curve. The included ggplot2 extensions such as date axes binned by week are relevant for other applications in epidemiology and beyond. The approach is described in Suster et al. (2024) <doi:10.1101/2024.04.02.24305229>.
This package provides an interface to PDFMiner <https://github.com/pdfminer/pdfminer.six> a Python package for extracting information from PDF'-files. PDFMiner has the goal to get all information available in a PDF'-file, position of the characters, font type, font size and informations about lines. Which makes it the perfect starting point for extracting tables from PDF'-files. More information can be found in the package README'-file.
It aggregates protein panel data and metadata for protein quantitative trait locus (pQTL) analysis using pQTLtools (<https://jinghuazhao.github.io/pQTLtools/>). The package includes data from affinity-based panels such as Olink (<https://olink.com/>) and SomaScan (<https://somalogic.com/>), as well as mass spectrometry-based panels from CellCarta (<https://cellcarta.com/>) and Seer (<https://seer.bio/>). The metadata encompasses updated annotations and publication details.
This is an implementation of model-based trees with global model parameters (PALM trees). The PALM tree algorithm is an extension to the MOB algorithm (implemented in the partykit package), where some parameters are fixed across all groups. Details about the method can be found in Seibold, Hothorn, Zeileis (2016) <arXiv:1612.07498>. The package offers coef(), logLik(), plot(), and predict() functions for PALM trees.
These functions use data augmentation and Bayesian techniques for the assessment of single-member and incomplete ensembles of climate projections. It provides unbiased estimates of climate change responses of all simulation chains and of all uncertainty variables. It additionally propagates uncertainty due to missing information in the estimates. - Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie. (2019) <doi:10.1175/JCLI-D-18-0606.1>.
This package provides a set of functions of increasing complexity allows users to (1) convert QuadKey-identified datasets, based on Microsoft's Bing Maps Tile System', into Simple Features data frames, (2) transform Simple Features data frames into rasters, and (3) process multiple Meta ('Facebook') QuadKey-identified human mobility files directly into raster files. For more details, see Dâ Andrea et al. (2024) <doi:10.21105/joss.06500>.
This package provides a fast implementation of the weighted information similarity aggregation (WISE) test for detecting serial dependence, particularly suited for high-dimensional and non-Euclidean time series. Includes functions for constructing similarity matrices and conducting hypothesis testing. Users can use different similarity measures and define their own weighting schemes. For more details see Q Zhu, M Liu, Y Han, D Zhou (2025) <doi:10.48550/arXiv.2509.05678>.