This package provides types and useful methods for working with IPv4 and IPv6 network addresses, commonly called IP prefixes. The new IpNet, Ipv4Net, and Ipv6Net types build on the existing IpAddr, Ipv4Addr, and Ipv6Addr types already provided in Rust's standard library and align to their design to stay consistent. The module also provides useful traits that extend Ipv4Addr and Ipv6Addr with methods for Add, Sub, BitAnd, and BitOr operations. The module only uses stable feature so it is guaranteed to compile using the stable toolchain.
This package provides functions are provided to calculate and display ridge TRACE Diagnostics for a variety of alternative Shrinkage Paths. While all methods focus on Maximum Likelihood estimation of unknown true effects under normal distribution-theory, some estimates are modified to be Unbiased or to have "Correct Range" when estimating either [1] the noncentrality of the F-ratio for testing that true Beta coefficients are Zeros or [2] the "relative" MSE Risk (i.e. MSE divided by true sigma-square, where the "relative" variance of OLS is known.) The eff.ridge()
function implements the "Efficient Shrinkage Path" introduced in Obenchain (2022) <Open Statistics>. This "p-Parameter" Shrinkage-Path always passes through the vector of regression coefficient estimates Most-Likely to achieve the overall Optimal Variance-Bias Trade-Off and is the shortest Path with this property. Functions eff.aug()
and eff.biv()
augment the calculations made by eff.ridge()
to provide plots of the bivariate confidence ellipses corresponding to any of the p*(p-1) possible ordered pairs of shrunken regression coefficients. Functions for plotting TRACE Diagnostics now have more options.
We extend existing gene enrichment tests to perform adverse event enrichment analysis. Unlike the continuous gene expression data, adverse event data are counts. Therefore, adverse event data has many zeros and ties. We propose two enrichment tests. One is a modified Fisher's exact test based on pre-selected significant adverse events, while the other is based on a modified Kolmogorov-Smirnov statistic. We add Covariate adjustment to improve the analysis."Adverse event enrichment tests using VAERS" Shuoran Li, Lili Zhao (2020) <arXiv:2007.02266>
.
This package contains data and functions that can be used to make actuarial life tables. Each function adds a column to the inputted dataset for each intermediate calculation between mortality rate and life expectancy. Users can run any of our functions to complete the life table until that step, or run lifetable()
to output a full life table that can be customized to remove optional columns. Methods for creating lifetables are as described in Zedstatistics (2021) <https://www.youtube.com/watch?v=Dfe59glNXAQ>
.
This package provides a comprehensive system for selecting variables and weighting data to match the specifications of the American National Election Studies. The package includes methods for identifying discrepant variables, raking data, and assessing the effects of the raking algorithm. It also allows automated re-raking if target variables fall outside identified bounds and allows greater user specification than other available raking algorithms. A variety of simple weighted statistics that were previously in this package (version .55 and earlier) have been moved to the package weights.'.
Power calculations are a critical component of any research study to determine the minimum sample size necessary to detect differences between multiple groups. Researchers often work with data taking the form of proportions that can be modeled with a beta distribution. Here we present an R package, BetaPASS
', that perform power and sample size calculations for data following a beta distribution with comparative nonparametric output. This package allows flexibility with multiple options for link functions to fit the data and graphing functionality for visual comparisons.
An implementation of double generalized linear model (DGLM) building with variable selection procedures and handling of interaction terms and other complex situations. We also provide a method of handling convergence issues within the dglm()
function. The package offers a simulation function for generating simulated data for testing purposes and utilizes the forward stepwise variable selection procedure in model-building. It also provides a new custom bootstrap function for mean and standard deviation estimation and functions for building crossplots and squareplots from a data set.
Simulating and estimating peer effect models and network formation models. The class of peer effect models includes linear-in-means models (Lee, 2004; <doi:10.1111/j.1468-0262.2004.00558.x>), Tobit models (Xu and Lee, 2015; <doi:10.1016/j.jeconom.2015.05.004>), and discrete numerical data models (Houndetoungan, 2024; <doi:10.2139/ssrn.3721250>). The network formation models include pair-wise regressions with degree heterogeneity (Graham, 2017; <doi:10.3982/ECTA12679>) and exponential random graph models (Mele, 2017; <doi:10.3982/ECTA10400>).
This package creates sophisticated models of training data and validates the models with an independent test set, cross validation, or Out Of Bag (OOB) predictions on the training data. Create graphs and tables of the model validation results. Applies these models to GIS .img files of predictors to create detailed prediction surfaces. Handles large predictor files for map making, by reading in the .img files in chunks, and output to the .txt file the prediction for each data chunk, before reading the next chunk of data.
Provide simple functions to (i) compute a class of multi-functionality measures for a single ecosystem for given function weights, (ii) decompose gamma multi-functionality for pairs of ecosystems and K ecosystems (K can be greater than 2) into a within-ecosystem component (alpha multi-functionality) and an among-ecosystem component (beta multi-functionality). In each case, the correlation between functions can be corrected for. Based on biodiversity and ecosystem function data, this software also facilitates graphics for assessing biodiversity-ecosystem functioning relationships across scales.
Due to Rstudio's status as open source software, we believe it will be utilized frequently for future data analysis by users whom lack formal training or experience with R'. The NMVANOVA (Novice Model Variation ANOVA) a streamlined variation of experimental design functions that allows novice Rstudio users to perform different model variations one-way analysis of variance without downloading multiple libraries or packages. Users can easily manipulate the data block, and needed inputs so that users only have to plugin the four designed variables/values.
Helps you determine the analysis window to use when analyzing densely-sampled time-series data, such as EEG data, using permutation testing (Maris & Oostenveld, 2007) <doi:10.1016/j.jneumeth.2007.03.024>. These permutation tests can help identify the timepoints where significance of an effect begins and ends, and the results can be plotted in various types of heatmap for reporting. Mixed-effects models are supported using an implementation of the approach by Lee & Braun (2012) <doi:10.1111/j.1541-0420.2011.01675.x>.
This package provides some basic routines for simulating a clinical trial. The primary intent is to provide some tools to generate trial simulations for trials with time to event outcomes. Piecewise exponential failure rates and piecewise constant enrollment rates are the underlying mechanism used to simulate a broad range of scenarios such as those presented in Lin et al. (2020) <doi:10.1080/19466315.2019.1697738>. However, the basic generation of data is done using pipes to allow maximum flexibility for users to meet different needs.
Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.
Make it easy to deal with multiple cross-tables in data exploration, by creating them, manipulating them, and adding color helpers to highlight important informations (differences from totals, comparisons between lines or columns, contributions to variance, confidence intervals, odds ratios, etc.). All functions are pipe-friendly and render data frames which can be easily manipulated. In the same time, time-taking operations are done with data.table to go faster with big dataframes. Tables can be exported with formats and colors to Excel', plot and html.
This package provides a test to understand the stability of the underlying stochastic data. Helps the userâ s understand whether the random variable under consideration is stationary or non-stationary without any manual interpretation of the results. It further ensures to check all the prerequisites and assumptions which are underlying the unit root test statistics and if the underlying data is found to be non-stationary in all the 4 lags the function diagnoses the input data and returns with an optimised solution on the same.
This package performs nearest neighbor-based imputation using one or more alternative approaches to processing multivariate data. These include methods based on canonical correlation: analysis, canonical correspondence analysis, and a multivariate adaptation of the random forest classification and regression techniques of Leo Breiman and Adele Cutler. Additional methods are also offered. The package includes functions for comparing the results from running alternative techniques, detecting imputation targets that are notably distant from reference observations, detecting and correcting for bias, bootstrapping and building ensemble imputations, and mapping results.
This package stores the data employed in the vignette of the GSVA package. These data belong to the following publications: Armstrong et al. Nat Genet 30:41-47, 2002; Cahoy et al. J Neurosci 28:264-278, 2008; Carrel and Willard, Nature, 434:400-404, 2005; Huang et al. PNAS, 104:9758-9763, 2007; Pickrell et al. Nature, 464:768-722, 2010; Skaletsky et al. Nature, 423:825-837; Verhaak et al. Cancer Cell 17:98-110, 2010; Costa et al. FEBS J, 288:2311-2331, 2021.
This package provides a toolset for the exploration of genetic and genomic data. Adegenet provides formal (S4) classes for storing and handling various genetic data, including genetic markers with varying ploidy and hierarchical population structure (genind
class), alleles counts by populations (genpop
), and genome-wide SNP data (genlight
). It also implements original multivariate methods (DAPC, sPCA), graphics, statistical tests, simulation tools, distance and similarity measures, and several spatial methods. A range of both empirical and simulated datasets is also provided to illustrate various methods.
This package provides a comprehensive toolbox for analysing Spatial Point Patterns. It is focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. It also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. It supports spatial covariate data such as pixel images and contains over 2000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference.
Computationally efficient tools for comparing all pairs of profiles in a DNA database. The expectation and covariance of the summary statistic is implemented for fast computing. Routines for estimating proportions of close related individuals are available. The use of wildcards (also called F- designation) is implemented. Dedicated functions ease plotting the results. See Tvedebrink et al. (2012) <doi:10.1016/j.fsigen.2011.08.001>. Compute the distribution of the numbers of alleles in DNA mixtures. See Tvedebrink (2013) <doi:10.1016/j.fsigss.2013.10.142>.
Simulates demic diffusion building on models previously developed for the expansion of Neolithic and other food-producing economies during the Holocene (Fort et al. (2012) <doi:10.7183/0002-7316.77.2.203>, Souza et al. (2021) <doi:10.1098/rsif.2021.0499>). Growth and emigration are modelled as density-dependent processes using logistic growth and an asymptotic threshold model. Environmental and terrain layers, which can change over time, affect carrying capacity, growth and mobility. Multiple centres of origin with their respective starting times can be specified.
This package provides a Haar-Fisz algorithm for Poisson intensity estimation. Will denoise Poisson distributed sequences where underlying intensity is not constant. Uses the multiscale variance-stabilization method called the Haar-Fisz transform. Contains functions to carry out the forward and inverse Haar-Fisz transform and denoising on near-Gaussian sequences. Can also carry out cycle-spinning. Main reference: Fryzlewicz, P. and Nason, G.P. (2004) "A Haar-Fisz algorithm for Poisson intensity estimation." Journal of Computational and Graphical Statistics, 13, 621-638. <doi:10.1198/106186004X2697>.
This package provides a modified version of alternating logistic regressions (ALR) with estimation based on orthogonalized residuals (ORTH) is implemented, which use paired estimating equations to jointly estimate parameters in marginal mean and within-association models. The within-cluster association between ordinal responses is modeled by global pairwise odds ratios (POR). A finite-sample bias correction is provided to POR parameter estimates based on matrix multiplicative adjusted orthogonalized residuals (MMORTH) for correcting estimating equations, and different bias-corrected variance estimators such as BC1, BC2, and BC3.