Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate some statistics aiming to help analyzing the clustering tendency of given data. In the first version, Hopkins statistic is implemented. See Hopkins and Skellam (1954) <doi:10.1093/oxfordjournals.aob.a083391>.
Calculate agrometeorological variables for crops including growing degree days (McMaster, GS & Wilhelm, WW (1997) <doi:10.1016/S0168-1923(97)00027-0>), cumulative rainfall, number of stress days and cumulative or mean radiation and evaporation. Convert dates to day of year and vice versa. Also, download curated and interpolated Australian weather data from the Queensland Government DES longpaddock website <https://www.longpaddock.qld.gov.au/>. This data is freely available under the Creative Commons 4.0 licence.
Computes marginal conformal p-values using conformal prediction in binary classification tasks. Conformal prediction is a framework that augments machine learning algorithms with a measure of uncertainty, in the form of prediction regions that attain a user-specified level of confidence. This package specifically focuses on providing conformal p-values that can be used to assess the confidence of the classification predictions. For more details, see Tyagi and Guo (2023) <https://proceedings.mlr.press/v204/tyagi23a.html>.
This package provides functions for computing the one-sided p-values of the Cochran-Armitage trend test statistic for the asymptotic and the exact conditional test. The computation of the p-value for the exact test is performed using an algorithm following an idea by Mehta, et al. (1992) <doi:10.2307/1390598>.
Compare C-statistics (concordance statistics) between two survival models, using either bootstrap resampling (Harrell's C) or Uno's C with perturbation-resampling (from the survC1 package). Returns confidence intervals and a p-value for the difference in C-statistics. Useful for evaluating and comparing predictive performance of survival models. Methods implemented for Uno's C are described in Uno et al. (2011) <doi:10.1002/sim.4154>.
This package contains functions that can determine whether a time series is second-order stationary or not (and hence evidence for locally stationarity). Given two non-stationary series (i.e. locally stationary series) this package can then discover time-varying linear combinations that are second-order stationary. Cardinali, A. and Nason, G.P. (2013) <doi:10.18637/jss.v055.i01>.
An interface to the cycle routing/data services provided by CycleStreets', a not-for-profit social enterprise and advocacy organisation. The application programming interfaces (APIs) provided by CycleStreets are documented at (<https://www.cyclestreets.net/api/>). The focus of this package is the journey planning API, which aims to emulate the routes taken by a knowledgeable cyclist. An innovative feature of the routing service of its provision of fastest, quietest and balanced profiles. These represent routes taken to minimise time, avoid traffic and compromise between the two, respectively.
Offers a diverse collection of datasets focused on cardiovascular and heart disease research, including heart failure, myocardial infarction, aortic dissection, transplant outcomes, cardiovascular risk factors, drug efficacy, and mortality trends. Designed for researchers, clinicians, epidemiologists, and data scientists, the package features clinical, epidemiological, and simulated datasets covering a wide range of conditions and treatments such as statins, anticoagulants, and beta blockers. It supports analyses related to disease progression, treatment effects, rehospitalization, and public health outcomes across various cardiovascular patient populations.
Given response y, continuous predictor x, and covariate matrix, the relationship between E(y) and x is estimated with a shape constrained regression spline. Function outputs fits and various types of inference.
This package provides methods for powering cluster-randomized trials with two continuous co-primary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) <doi:10.2307/2531989>, Vickerstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Li et al. (2020) <doi:10.1111/biom.13212>.
This package provides a collection of functions described and used in the book Foadi (2026, ISBN:9780750326308) "Computational Physics with R". These include routines for numerical differentiation, integration, differential equations, eigenvalue problems, Monte Carlo methods, and other algorithms relevant to computational physics.
This package provides a framework for specifying and running flexible linear-time reachability-based algorithms for graphical causal inference. Rule tables are used to encode and customize the reachability algorithm to typical causal and probabilistic reasoning tasks such as finding d-connected nodes or more advanced applications. For more information, see Wienöbst, Weichwald and Henckel (2025) <doi:10.48550/arXiv.2506.15758>.
This package implements the convex clustering through majorization-minimization (CCMM) algorithm described in Touw, Groenen, and Terada (2022) <doi:10.48550/arXiv.2211.01877> to perform minimization of the convex clustering loss function.
Access Cloudstor via their WebDAV API. This package can read, write, and navigate Cloudstor from R.
This package implements a specific form of segmented linear regression with two independent variables. The visualization of that function looks like a quarter segment of a cowbell giving the package its name. The package has been specifically constructed for the case where minimum and maximum value of the dependent and two independent variables are known a prior, which is usually the case when those values are derived from Likert scales.
Google's Compact Language Detector 3 is a neural network model for language identification and the successor of cld2 (available from CRAN). The algorithm is still experimental and takes a novel approach to language detection with different properties and outcomes. It can be useful to combine this with the Bayesian classifier results from cld2'. See <https://github.com/google/cld3#readme> for more information.
Perform the functional modeling methods of Huang and Wang (2018) <doi:10.1111/biom.12741> to accommodate dependent error in covariates of the proportional hazards model. The adopted measurement error model has minimal assumptions on the dependence structure, and an instrumental variable is supposed to be available.
This package provides tools for fitting, assessing, and comparing logistic and conditional logistic regression models. Includes residual diagnostics and goodness of fit measures for model development and evaluation in matched case control studies.
This package provides tools for assessing data quality, performing exploratory analysis, and semi-automatic preprocessing of messy data with change tracking for integral dataset cleaning.
Detects a variety of coordinated actions on social media and outputs the network of coordinated users along with related information.
Draws causal hypergraph plots from models output by configurational comparative methods such as Coincidence Analysis (CNA) or Qualitative Comparative Analysis (QCA).
Color palettes for EPL, MLB, NBA, NHL, and NFL teams.
This package provides means of plots for comparing utilization data of compute systems.
An implementation of efficiency first conformal prediction (EFCP) and validity first conformal prediction (VFCP) that demonstrates both validity (coverage guarantee) and efficiency (width guarantee). To learn how to use it, check the vignettes for a quick tutorial. The package is based on the work by Yang Y., Kuchibhotla A.,(2021) <arxiv:2104.13871>.