Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This tool performs pairwise correlation analysis and estimate causality. Particularly, it is useful for detecting the metabolites that would be altered by the gut bacteria.
This package provides functions for loading large (10M+ lines) CSV and other delimited files, similar to read.csv, but typically faster and using less memory than the standard R loader. While not entirely general, it covers many common use cases when the types of columns in the CSV file are known in advance. In addition, the package provides a class int64', which represents 64-bit integers exactly when reading from a file. The latter is useful when working with 64-bit integer identifiers exported from databases. The CSV file loader supports common column types including integer', double', string', and int64', leaving further type transformations to the user.
This package provides a tiny package to generate CRediT author statements (<https://credit.niso.org/>). It provides three functions: create a template, read it back and generate the CRediT author statement in a text file.
Data from statistical agencies and other institutions often need to be protected before they can be published. This package can be used to perturb statistical tables in a consistent way. The main idea is to add - at the micro data level - a record key for each unit. Based on these keys, for any cell in a statistical table a cell key is computed as a function on the record keys contributing to a specific cell. Values that are added to the cell in order to perturb it are derived from a lookup-table that maps values of cell keys to specific perturbation values. The theoretical basis for the methods implemented can be found in Thompson, Broadfoot and Elazar (2013) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf> which was extended and enhanced by Giessing and Tent (2019) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_Germany_Giessing_Tent_AD.pdf>.
This package provides function to create, read, write, and work with iCalendar files (which typically have .ics or .ical extensions), and the scheduling data, calendars and timelines of people, organisations and other entities that they represent. iCalendar is an open standard for exchanging calendar and scheduling information between users and computers, described at <https://icalendar.org/>.
Core visualizations and summaries for the CRAN package database. The package provides comprehensive methods for cleaning up and organizing the information in the CRAN package database, for building package directives networks (depends, imports, suggests, enhances, linking to) and collaboration networks, producing package dependence trees, and for computing useful summaries and producing interactive visualizations from the resulting networks and summaries. The resulting networks can be coerced to igraph <https://CRAN.R-project.org/package=igraph> objects for further analyses and modelling.
This package performs analysis of categorical-variable with missing values. Implements methods from Schafer, JL, Analysis of Incomplete Multivariate Data, Chapman and Hall.
Fit composite Gaussian process (CGP) models as described in Ba and Joseph (2012) "Composite Gaussian Process Models for Emulating Expensive Functions", Annals of Applied Statistics. The CGP model is capable of approximating complex surfaces that are not second-order stationary. Important functions in this package are CGP, print.CGP, summary.CGP, predict.CGP and plotCGP.
Estimation and goodness-of-fit functions for copula-based models of bivariate data with arbitrary distributions (discrete, continuous, mixture of both types). The copula families considered here are the Gaussian, Student, Clayton, Frank, Gumbel, Joe, Plackett, BB1, BB6, BB7,BB8, together with the following non-central squared copula families in Nasri (2020) <doi:10.1016/j.spl.2020.108704>: ncs-gaussian, ncs-clayton, ncs-gumbel, ncs-frank, ncs-joe, and ncs-plackett. For theoretical details, see, e.g., Nasri and Remillard (2023) <arXiv:2301.13408>.
This package provides a framework for estimating causal effects of a continuous exposure using observational data, and implementing matching and weighting on the generalized propensity score. Wu, X., Mealli, F., Kioumourtzoglou, M.A., Dominici, F. and Braun, D., 2022. Matching on generalized propensity scores with continuous exposures. Journal of the American Statistical Association, pp.1-29.
This package provides a utility to quickly obtain clean and tidy college football data. Serves as a wrapper around the <https://collegefootballdata.com/> API and provides functions to access live play by play and box score data from ESPN <https://www.espn.com> when available. It provides users the capability to access a plethora of endpoints, and supplement that data with additional information (Expected Points Added/Win Probability added).
This is a one-function package that will pass only unique values to a computationally-expensive function that returns an output of the same length as the input. In importing and working with tidy data, it is common to have index columns, often including time stamps that are far from unique. Some functions to work with these such as text conversion to other variable types (e.g. as.POSIXct()), various grep()-based functions, and often the cut() function are relatively slow when working with tens of millions of rows or more.
It uses the first-order sensitivity index to measure whether the weights assigned by the creator of the composite indicator match the actual importance of the variables. Moreover, the variance inflation factor is used to reduce the set of correlated variables. In the case of a discrepancy between the importance and the assigned weight, the script determines weights that allow adjustment of the weights to the intended impact of variables. If the optimised weights are unable to reflect the desired importance, the highly correlated variables are reduced, taking into account variance inflation factor. The final outcome of the script is the calculated value of the composite indicator based on optimal weights and a reduced set of variables, and the linear ordering of the analysed objects.
One haplotype is a combination of SNP (Single Nucleotide Polymorphisms) within the QTL (Quantitative Trait Loci). clusterhap groups together all individuals of a population with the same haplotype. Each group contains individual with the same allele in each SNP, whether or not missing data. Thus, clusterhap groups individuals, that to be imputed, have a non-zero probability of having the same alleles in the entire sequence of SNP's. Moreover, clusterhap calculates such probability from relative frequencies.
This package provides a set of functions for counterfactual decomposition (cfdecomp). The functions available in this package decompose differences in an outcome attributable to a mediating variable (or sets of mediating variables) between groups based on counterfactual (causal inference) theory. By using Monte Carlo (MC) integration (simulations based on empirical estimates from multivariable models) we provide added flexibility compared to existing (analytical) approaches, at the cost of computational power or time. The added flexibility means that we can decompose difference between groups in any outcome or and with any mediator (any variable type and distribution). See Sudharsanan & Bijlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.
Implement various chromosomal instability metrics. CINmetrics (Chromosomal INstability metrics) provides functions to calculate various chromosomal instability metrics on masked Copy Number Variation(CNV) data at individual sample level. The chromosomal instability metrics have been implemented as described in the following studies: Baumbusch LO et al. 2013 <doi:10.1371/journal.pone.0054356>, Davidson JM et al. 2014 <doi:10.1371/journal.pone.0079079>, Chin SF et al. 2007 <doi:10.1186/gb-2007-8-10-r215>.
Allows to generate colors from palettes defined in the colormap module of Node.js'. (see <https://github.com/bpostlethwaite/colormap> for more information). In total it provides 44 distinct palettes made from sequential and/or diverging colors. In addition to the pre defined palettes you can also specify your own set of colors. There are also scale functions that can be used with ggplot2'.
Connect to WFP's Moda platform to R, download data, and obtain the list of individuals with access to the project along with their access level.
The cyclotomic numbers are complex numbers that can be thought of as the rational numbers extended with the roots of unity. They are represented exactly, enabling exact computations. They contain the Gaussian rationals (complex numbers with rational real and imaginary parts) as well as the square roots of all rational numbers. They also contain the sine and cosine of all rational multiples of pi. The algorithms implemented in this package are taken from the Haskell package cyclotomic', whose algorithms are adapted from code by Martin Schoenert and Thomas Breuer in the GAP project (<https://www.gap-system.org/>). Cyclotomic numbers have applications in number theory, algebraic geometry, algebraic number theory, coding theory, and in the theory of graphs and combinatorics. They have connections to the theory of modular functions and modular curves.
This package provides functions to perform the following analyses: i) inferring epistasis from RNAi double knockdown data; ii) identifying gene pairs of multiple mutation patterns; iii) assessing association between gene pairs and survival; and iv) calculating the smallworldness of a graph (e.g., a gene interaction network). Data and analyses are described in Wang, X., Fu, A. Q., McNerney, M. and White, K. P. (2014). Widespread genetic epistasis among breast cancer genes. Nature Communications. 5 4828. <doi:10.1038/ncomms5828>.
Implementing seven Covariate-Adaptive Randomization to assign patients to two treatments. Three of these procedures can also accommodate quantitative and mixed covariates. Given a set of covariates, the user can generate a single sequence of allocations or replicate the design multiple times by simulating the patients covariate profiles. At the end, an extensive assessment of the performance of the randomization procedures is provided, calculating several imbalance measures. See Baldi Antognini A, Frieri R, Zagoraiou M and Novelli M (2022) <doi:10.1007/s00362-022-01381-1> for details.
This package provides a companion package to cmstatr <https://cran.r-project.org/package=cmstatr>. cmstatr contains statistical methods that are published in the Composite Materials Handbook, Volume 1 (2012, ISBN: 978-0-7680-7811-4), while cmstatrExt contains statistical methods that are not included in that handbook.
Detection of outliers in circular-circular regression models, modifying its and estimating of models parameters.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to China, such as holidays, economic indicators, and international demographic and geopolitical indicators. Additionally, the package includes one of the largest curated collections of open datasets focused on China and Hong Kong, covering topics such as air quality, demographics, input-output tables, epidemiology, political structure, names, and social indicators. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.