_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-icensmis 1.5.0
Propagated dependencies: r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=icensmis
Licenses: GPL 2+
Synopsis: Study Design and Data Analysis in the Presence of Error-Prone Diagnostic Tests and Self-Reported Outcomes
Description:

We consider studies in which information from error-prone diagnostic tests or self-reports are gathered sequentially to determine the occurrence of a silent event. Using a likelihood-based approach incorporating the proportional hazards assumption, we provide functions to estimate the survival distribution and covariate effects. We also provide functions for power and sample size calculations for this setting. Please refer to Xiangdong Gu, Yunsheng Ma, and Raji Balasubramanian (2015) <doi: 10.1214/15-AOAS810>, Xiangdong Gu and Raji Balasubramanian (2016) <doi: 10.1002/sim.6962>, Xiangdong Gu, Mahlet G Tadesse, Andrea S Foulkes, Yunsheng Ma, and Raji Balasubramanian (2020) <doi: 10.1186/s12911-020-01223-w>.

r-pressure 0.2.5
Propagated dependencies: r-zoo@1.8-14 r-stringr@1.5.1 r-sf@1.0-21 r-scales@1.4.0 r-rvcg@0.25 r-readxl@1.4.5 r-raster@3.6-32 r-pracma@2.4.4 r-morpho@2.12 r-magrittr@2.0.3 r-magick@2.8.6 r-ggplot2@3.5.2 r-ggmap@4.0.1 r-gdistance@1.6.4 r-dplyr@1.1.4 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/Telfer/pressuRe
Licenses: Expat
Synopsis: Imports, Processes, and Visualizes Biomechanical Pressure Data
Description:

Allows biomechanical pressure data from a range of systems to be imported and processed in a reproducible manner. Automatic and manual tools are included to let the user define regions (masks) to be analyzed. Also includes functions for visualizing and animating pressure data. Example methods are described in Shi et al., (2022) <doi:10.1038/s41598-022-19814-0>, Lee et al., (2014) <doi:10.1186/1757-1146-7-18>, van der Zward et al., (2014) <doi:10.1186/1757-1146-7-20>, Najafi et al., (2010) <doi:10.1016/j.gaitpost.2009.09.003>, Cavanagh and Rodgers (1987) <doi:10.1016/0021-9290(87)90255-7>.

r-phenesse 0.1.3
Propagated dependencies: r-fitdistrplus@1.2-2 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/mbelitz/phenesse
Licenses: CC0
Synopsis: Estimate Phenological Metrics using Presence-Only Data
Description:

Generates Weibull-parameterized estimates of phenology for any percentile of a distribution using the framework established in Cooke (1979) <doi:10.1093/biomet/66.2.367>. Extensive testing against other estimators suggest the weib_percentile() function is especially useful in generating more accurate and less biased estimates of onset and offset (Belitz et al. 2020) <doi:10.1111/2041-210X.13448>. Non-parametric bootstrapping can be used to generate confidence intervals around those estimates, although this is computationally expensive. Additionally, this package offers an easy way to perform non-parametric bootstrapping to generate confidence intervals for quantile estimates, mean estimates, or any statistical function of interest.

r-silicate 0.7.1
Propagated dependencies: r-unjoin@0.1.0 r-tibble@3.2.1 r-rlang@1.1.6 r-purrr@1.0.4 r-magrittr@2.0.3 r-gridbase@0.4-7 r-gibble@0.4.0 r-dplyr@1.1.4 r-decido@0.3.0 r-crsmeta@0.3.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/hypertidy/silicate
Licenses: GPL 3
Synopsis: Common Forms for Complex Hierarchical and Relational Data Structures
Description:

Generate common data forms for complex data suitable for conversions and transmission by decomposition as paths or primitives. Paths are sequentially-linked records, primitives are basic atomic elements and both can model many forms and be grouped into hierarchical structures. The universal models SC0 (structural) and SC (labelled, relational) are composed of edges and can represent any hierarchical form. Specialist models PATH', ARC and TRI provide the most common intermediate forms used for converting from one form to another. The methods are inspired by the simplicial complex <https://en.wikipedia.org/wiki/Simplicial_complex> and provide intermediate forms that relate spatial data structures to this mathematical construct.

r-alkahest 1.3.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://codeberg.org/tesselle/alkahest
Licenses: GPL 3+
Synopsis: Pre-Processing XY Data from Experimental Methods
Description:

This package provides a lightweight, dependency-free toolbox for pre-processing XY data from experimental methods (i.e. any signal that can be measured along a continuous variable). This package provides methods for baseline estimation and correction, smoothing, normalization, integration and peaks detection. Baseline correction methods includes polynomial fitting as described in Lieber and Mahadevan-Jansen (2003) <doi:10.1366/000370203322554518>, Rolling Ball algorithm after Kneen and Annegarn (1996) <doi:10.1016/0168-583X(95)00908-6>, SNIP algorithm after Ryan et al. (1988) <doi:10.1016/0168-583X(88)90063-8>, 4S Peak Filling after Liland (2015) <doi:10.1016/j.mex.2015.02.009> and more.

r-gbm-auto 2024.10.01
Propagated dependencies: r-viridis@0.6.5 r-tidyselect@1.2.1 r-stringi@1.8.7 r-starsextra@0.2.8 r-stars@0.6-8 r-sf@1.0-21 r-readr@2.1.5 r-metrics@0.1.4 r-mapplots@1.5.2 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-ggspatial@1.1.9 r-ggplot2@3.5.2 r-ggmap@4.0.1 r-gbm@2.2.2 r-dplyr@1.1.4 r-dismo@1.3-16 r-beepr@2.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gbm.auto
Licenses: Expat
Synopsis: Automated Boosted Regression Tree Modelling and Mapping Suite
Description:

Automates delta log-normal boosted regression tree abundance prediction. Loops through parameters provided (LR (learning rate), TC (tree complexity), BF (bag fraction)), chooses best, simplifies, & generates line, dot & bar plots, & outputs these & predictions & a report, makes predicted abundance maps, and Unrepresentativeness surfaces. Package core built around gbm (gradient boosting machine) functions in dismo (Hijmans, Phillips, Leathwick & Jane Elith, 2020 & ongoing), itself built around gbm (Greenwell, Boehmke, Cunningham & Metcalfe, 2020 & ongoing, originally by Ridgeway). Indebted to Elith/Leathwick/Hastie 2008 Working Guide <doi:10.1111/j.1365-2656.2008.01390.x>; workflow follows Appendix S3. See <https://www.simondedman.com/> for published guides and papers using this package.

r-holomics 1.1.1
Propagated dependencies: r-visnetwork@2.1.2 r-uuid@1.2-1 r-tippy@0.1.0 r-tidyr@1.3.1 r-stringr@1.5.1 r-shinywidgets@0.9.0 r-shinyvalidate@0.1.3 r-shinyjs@2.1.0 r-shinybusy@0.3.3 r-shinyalert@3.1.0 r-shiny@1.10.0 r-rspectra@0.16-2 r-reshape2@1.4.4 r-readxl@1.4.5 r-openxlsx@4.2.8 r-mixomics@6.32.0 r-matrixstats@1.5.0 r-markdown@2.0 r-igraph@2.1.4 r-golem@0.5.1 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-dt@0.33 r-dplyr@1.1.4 r-config@0.3.2 r-bs4dash@2.3.4 r-biocparallel@1.42.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://github.com/MolinLab/Holomics
Licenses: GPL 3+
Synopsis: An User-Friendly R 'shiny' Application for Multi-Omics Data Integration and Analysis
Description:

This package provides a shiny application, which allows you to perform single- and multi-omics analyses using your own omics datasets. After the upload of the omics datasets and a metadata file, single-omics is performed for feature selection and dataset reduction. These datasets are used for pairwise- and multi-omics analyses, where automatic tuning is done to identify correlations between the datasets - the end goal of the recommended Holomics workflow. Methods used in the package were implemented in the package mixomics by Florian Rohart,Benoît Gautier,Amrit Singh,Kim-Anh Lê Cao (2017) <doi:10.1371/journal.pcbi.1005752> and are described there in further detail.

r-ichimoku 1.5.6
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-shiny@1.10.0 r-secretbase@1.0.5 r-rcppsimdjson@0.1.13 r-nanonext@1.6.0 r-mirai@2.3.0 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://shikokuchuo.net/ichimoku/
Licenses: GPL 3+
Synopsis: Visualization and Tools for Ichimoku Kinko Hyo Strategies
Description:

An implementation of Ichimoku Kinko Hyo', also commonly known as cloud charts'. Static and interactive visualizations with tools for creating, backtesting and development of quantitative ichimoku strategies. As described in Sasaki (1996, ISBN:4925152009), the technique is a refinement on candlestick charting, originating from Japan and now in widespread use in technical analysis worldwide. Translating as one-glance equilibrium chart', it allows the price action and market structure of financial securities to be determined at-a-glance'. Incorporates an interface with the OANDA fxTrade API <https://developer.oanda.com/> for retrieving historical and live streaming price data for major currencies, metals, commodities, government bonds and stock indices.

r-musicnmr 1.0
Propagated dependencies: r-seewave@2.2.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=musicNMR
Licenses: GPL 2+
Synopsis: Conversion of Nuclear Magnetic Resonance Spectra in Audio Files
Description:

This package provides a collection of functions for converting and visualization the free induction decay of mono dimensional nuclear magnetic resonance (NMR) spectra into an audio file. It facilitates the conversion of Bruker datasets in files WAV. The sound of NMR signals could provide an alternative to the current representation of the individual metabolic fingerprint and supply equally significant information. The package includes also NMR spectra of the urine samples provided by four healthy donors. Based on Cacciatore S, Saccenti E, Piccioli M. Hypothesis: the sound of the individual metabolic phenotype? Acoustic detection of NMR experiments. OMICS. 2015;19(3):147-56. <doi:10.1089/omi.2014.0131>.

r-shipunov 1.17.1
Propagated dependencies: r-pbsmapping@2.74.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shipunov
Licenses: GPL 2+
Synopsis: Miscellaneous Functions from Alexey Shipunov
Description:

This package provides a collection of functions for data manipulation, plotting and statistical computing, to use separately or with the book "Visual Statistics. Use R!": Shipunov (2020) <http://ashipunov.info/shipunov/software/r/r-en.htm>. Dr Alexey Shipunov died in December 2022. Most useful functions: Bclust(), Jclust() and BootA() which bootstrap hierarchical clustering; Recode() which does multiple recoding in a fast, simple and flexible way; Misclass() which outputs confusion matrix even if classes are not concerted; Overlap() which measures group separation on any projection; Biarrows() which converts any scatterplot into biplot; and Pleiad() which is fast and flexible correlogram.

r-tspredit 1.2.727
Propagated dependencies: r-wavelets@0.3-0.2 r-randomforest@4.7-1.2 r-nnet@7.3-20 r-mfilter@0.1-5 r-kfas@1.6.0 r-hht@2.1.6 r-forecast@8.24.0 r-fnn@1.1.4.1 r-elmnnrcpp@1.0.4 r-e1071@1.7-16 r-dplyr@1.1.4 r-desctools@0.99.60 r-daltoolbox@1.2.727
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cefet-rj-dal.github.io/tspredit/
Licenses: Expat
Synopsis: Time Series Prediction with Integrated Tuning
Description:

Time series prediction is a critical task in data analysis, requiring not only the selection of appropriate models, but also suitable data preprocessing and tuning strategies. TSPredIT (Time Series Prediction with Integrated Tuning) is a framework that provides a seamless integration of data preprocessing, decomposition, model training, hyperparameter optimization, and evaluation. Unlike other frameworks, TSPredIT emphasizes the co-optimization of both preprocessing and modeling steps, improving predictive performance. It supports a variety of statistical and machine learning models, filtering techniques, outlier detection, data augmentation, and ensemble strategies. More information is available in Salles et al. <doi:10.1007/978-3-662-68014-8_2>.

r-gunifrac 1.8
Propagated dependencies: r-ape@5.8-1 r-dirmult@0.1.3-5 r-foreach@1.5.2 r-ggplot2@3.5.2 r-ggrepel@0.9.6 r-inline@0.3.21 r-mass@7.3-65 r-matrix@1.7-3 r-matrixstats@1.5.0 r-modeest@2.4.0 r-rcpp@1.0.14 r-rmutil@1.1.10 r-statmod@1.5.0 r-vegan@2.6-10
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/package=GUniFrac
Licenses: GPL 3
Synopsis: Generalized UniFrac distances and methods for microbiome data analysis
Description:

This package provides a suite of methods for powerful and robust microbiome data analysis, including data normalization, data simulation, community-level association testing and differential abundance analysis. It implements generalized UniFrac distances, Geometric Mean of Pairwise Ratios (GMPR) normalization, semiparametric data simulator, distance-based statistical methods, and feature- based statistical methods. The distance-based statistical methods include three extensions of PERMANOVA:

  • PERMANOVA using the Freedman-Lane permutation scheme,

  • PERMANOVA omnibus test using multiple matrices, and

  • analytical approach to approximating PERMANOVA p-value.

Feature-based statistical methods include linear model-based methods for differential abundance analysis of zero-inflated high-dimensional compositional data.

r-bayesppd 1.1.3
Propagated dependencies: r-rcppnumerical@0.6-0 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesPPD
Licenses: GPL 3+
Synopsis: Bayesian Power Prior Design
Description:

Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.

r-cfdecomp 0.4.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cfdecomp
Licenses: GPL 3
Synopsis: Counterfactual Decomposition: MC Integration of the G-Formula
Description:

This package provides a set of functions for counterfactual decomposition (cfdecomp). The functions available in this package decompose differences in an outcome attributable to a mediating variable (or sets of mediating variables) between groups based on counterfactual (causal inference) theory. By using Monte Carlo (MC) integration (simulations based on empirical estimates from multivariable models) we provide added flexibility compared to existing (analytical) approaches, at the cost of computational power or time. The added flexibility means that we can decompose difference between groups in any outcome or and with any mediator (any variable type and distribution). See Sudharsanan & Bijlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.

r-drhotnet 2.3
Propagated dependencies: r-spdep@1.3-11 r-spatstat-linnet@3.2-6 r-spatstat-geom@3.4-1 r-spatstat@3.3-3 r-sp@2.2-0 r-raster@3.6-32 r-pbsmapping@2.74.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DRHotNet
Licenses: GPL 2
Synopsis: Differential Risk Hotspots in a Linear Network
Description:

This package performs the identification of differential risk hotspots (Briz-Redon et al. 2019) <doi:10.1016/j.aap.2019.105278> along a linear network. Given a marked point pattern lying on the linear network, the method implemented uses a network-constrained version of kernel density estimation (McSwiggan et al. 2017) <doi:10.1111/sjos.12255> to approximate the probability of occurrence across space for the type of event specified by the user through the marks of the pattern (Kelsall and Diggle 1995) <doi:10.2307/3318678>. The goal is to detect microzones of the linear network where the type of event indicated by the user is overrepresented.

r-fluxible 1.2.6
Propagated dependencies: r-zoo@1.8-14 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-stringr@1.5.1 r-rlang@1.1.6 r-purrrlyr@0.0.8 r-purrr@1.0.4 r-progress@1.2.3 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-haven@2.5.5 r-ggplot2@3.5.2 r-ggforce@0.4.2 r-dplyr@1.1.4 r-broom@1.0.8
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://plant-functional-trait-course.github.io/fluxible/
Licenses: GPL 3+
Synopsis: Ecosystem Gas Fluxes Calculations for Closed Loop Chamber Setup
Description:

Processes the raw data from closed loop flux chamber (or tent) setups into ecosystem gas fluxes usable for analysis. It goes from a data frame of gas concentration over time (which can contain several measurements) and a meta data file indicating which measurement was done when, to a data frame of ecosystem gas fluxes including quality diagnostics. Functions provided include different models (exponential as described in Zhao et al (2018) <doi:10.1016/j.agrformet.2018.08.022>, quadratic and linear) to estimate the fluxes from the raw data, quality assessment, plotting for visual check and calculation of fluxes based on the setup specific parameters (chamber size, plot area, ...).

r-nparcomp 3.0
Propagated dependencies: r-mvtnorm@1.3-3 r-multcomp@1.4-28
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nparcomp
Licenses: GPL 2+ GPL 3+
Synopsis: Multiple Comparisons and Simultaneous Confidence Intervals
Description:

With this package, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes simultaneous p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. 2 sample comparisons can be performed with the same methods described above. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers. See Konietschke et al. (2015) <doi:10.18637/jss.v064.i09> for details.

r-spdesign 0.0.5
Propagated dependencies: r-tibble@3.2.1 r-stringr@1.5.1 r-randtoolbox@2.0.5 r-matrixstats@1.5.0 r-future@1.49.0 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://spdesign.edsandorf.me
Licenses: CC-BY-SA 4.0
Synopsis: Designing Stated Preference Experiments
Description:

Contemporary software commonly used to design stated preference experiments are expensive and the code is closed source. This is a free software package with an easy to use interface to make flexible stated preference experimental designs using state-of-the-art methods. For an overview of stated choice experimental design theory, see e.g., Rose, J. M. & Bliemer, M. C. J. (2014) in Hess S. & Daly. A. <doi:10.4337/9781781003152>. The package website can be accessed at <https://spdesign.edsandorf.me>. We acknowledge funding from the European Unionâ s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant INSPiRE (Grant agreement ID: 793163).

r-smoothic 1.2.0
Propagated dependencies: r-toordinal@1.3-0.0 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-purrr@1.0.4 r-numderiv@2016.8-1.1 r-mass@7.3-65 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/meadhbh-oneill/smoothic
Licenses: GPL 3
Synopsis: Variable Selection Using a Smooth Information Criterion
Description:

Implementation of the SIC epsilon-telescope method, either using single or distributional (multiparameter) regression. Includes classical regression with normally distributed errors and robust regression, where the errors are from the Laplace distribution. The "smooth generalized normal distribution" is used, where the estimation of an additional shape parameter allows the user to move smoothly between both types of regression. See O'Neill and Burke (2022) "Robust Distributional Regression with Automatic Variable Selection" for more details. <arXiv:2212.07317>. This package also contains the data analyses from O'Neill and Burke (2023). "Variable selection using a smooth information criterion for distributional regression models". <doi:10.1007/s11222-023-10204-8>.

r-cocotest 1.0.3
Propagated dependencies: r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cocotest
Licenses: GPL 3
Synopsis: Dependence Condition Test Using Ranked Correlation Coefficients
Description:

This package provides a common misconception is that the Hochberg procedure comes up with adequate overall type I error control when test statistics are positively correlated. However, unless the test statistics follow some standard distributions, the Hochberg procedure requires a more stringent positive dependence assumption, beyond mere positive correlation, to ensure valid overall type I error control. To fill this gap, we formulate statistical tests grounded in rank correlation coefficients to validate fulfillment of the positive dependence through stochastic ordering (PDS) condition. See Gou, J., Wu, K. and Chen, O. Y. (2024). Rank correlation coefficient based tests on positive dependence through stochastic ordering with application in cancer studies, Technical Report.

r-eyetools 0.9.2
Propagated dependencies: r-zoo@1.8-14 r-viridis@0.6.5 r-rlang@1.1.6 r-png@0.1-8 r-pbapply@1.7-2 r-magick@2.8.6 r-lifecycle@1.0.4 r-hdf5r@1.3.12 r-glue@1.8.0 r-ggplot2@3.5.2 r-ggforce@0.4.2
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://tombeesley.github.io/eyetools/
Licenses: GPL 3
Synopsis: Analyse Eye Data
Description:

Enables the automation of actions across the pipeline, including initial steps of transforming binocular data and gap repair to event-based processing such as fixations, saccades, and entry/duration in Areas of Interest (AOIs). It also offers visualisation of eye movement and AOI entries. These tools take relatively raw (trial, time, x, and y form) data and can be used to return fixations, saccades, and AOI entries and time spent in AOIs. As the tools rely on this basic data format, the functions can work with data from any eye tracking device. Implements fixation and saccade detection using methods proposed by Salvucci and Goldberg (2000) <doi:10.1145/355017.355028>.

r-sylcount 0.2-6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/wrathematics/sylcount
Licenses: FSDG-compatible
Synopsis: Syllable Counting and Readability Measurements
Description:

An English language syllable counter, plus readability score measure-er. For readability, we support Flesch Reading Ease and Flesch-Kincaid Grade Level ('Kincaid et al'. 1975) <https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1055&context=istlibrary>, Automated Readability Index ('Senter and Smith 1967) <https://apps.dtic.mil/sti/citations/AD0667273>, Simple Measure of Gobbledygook (McLaughlin 1969), and Coleman-Liau (Coleman and Liau 1975) <doi:10.1037/h0076540>. The package has been carefully optimized and should be very efficient, both in terms of run time performance and memory consumption. The main methods are vectorized by document, and scores for multiple documents are computed in parallel via OpenMP'.

r-shinysir 0.1.2
Propagated dependencies: r-tidyr@1.3.1 r-shiny@1.10.0 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-desolve@1.40
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shinySIR
Licenses: Expat
Synopsis: Interactive Plotting for Mathematical Models of Infectious Disease Spread
Description:

This package provides interactive plotting for mathematical models of infectious disease spread. Users can choose from a variety of common built-in ordinary differential equation (ODE) models (such as the SIR, SIRS, and SIS models), or create their own. This latter flexibility allows shinySIR to be applied to simple ODEs from any discipline. The package is a useful teaching tool as students can visualize how changing different parameters can impact model dynamics, with minimal knowledge of coding in R. The built-in models are inspired by those featured in Keeling and Rohani (2008) <doi:10.2307/j.ctvcm4gk0> and Bjornstad (2018) <doi:10.1007/978-3-319-97487-3>.

r-ltfhplus 2.1.4
Propagated dependencies: r-xgboost@1.7.11.1 r-tmvtnorm@1.6 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-rcpp@1.0.14 r-purrr@1.0.4 r-igraph@2.1.4 r-future-apply@1.11.3 r-future@1.49.0 r-dplyr@1.1.4 r-batchmeans@1.0-4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/EmilMiP/LTFHPlus
Licenses: GPL 3
Synopsis: Implementation of LT-FH++
Description:

Implementation of LT-FH++, an extension of the liability threshold family history (LT-FH) model. LT-FH++ uses a Gibbs sampler for sampling from the truncated multivariate normal distribution and allows for flexible family structures. LT-FH++ was first described in Pedersen, Emil M., et al. (2022) <doi:10.1016/j.ajhg.2022.01.009> as an extension to LT-FH with more flexible family structures, and again as the age-dependent liability threshold (ADuLT) model Pedersen, Emil M., et al. (2023) <https://www.nature.com/articles/s41467-023-41210-z> as an alternative to traditional time-to-event genome-wide association studies, where family history was not considered.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014