Portable /proc/self/maps as a data frame. Determine which library or other region is mapped to a specific address of a process. -- R packages can contain native code, compiled to shared libraries at build or installation time. When loaded, each shared library occupies a portion of the address space of the main process. When only a machine instruction pointer is available (e.g. from a backtrace during error inspection or profiling), the address space map determines which library this instruction pointer corresponds to.
This package provides a set of RStudio addins that are designed to be used in combination with user-defined RStudio keyboard shortcuts. These addins either: 1) insert text at a cursor position (e.g. insert operators %>%, <<-, %$%, etc.), 2) replace symbols in selected pieces of text (e.g., convert backslashes to forward slashes which results in stings like "c:\data\" converted into "c:/data/") or 3) enclose text with special symbols (e.g., converts "bold" into "**bold**") which is convenient for editing R Markdown files.
Generalized estimating equations (GEE) are a popular choice for analyzing longitudinal binary outcomes. This package provides an interface for fitting GEE, currently for logistic regression, within the tern <https://cran.r-project.org/package=tern> framework (Zhu, Sabanés Bové et al., 2023) and tabulate results easily using rtables <https://cran.r-project.org/package=rtables> (Becker, Waddell et al., 2023). It builds on geepack <doi:10.18637/jss.v015.i02> (Højsgaard, Halekoh and Yan, 2006) for the actual GEE model fitting.
This package implements wild bootstrap tests for autocorrelation in Vector Autoregressive (VAR) models based on Ahlgren and Catani (2016) <doi:10.1007/s00362-016-0744-0>, a combined Lagrange Multiplier (LM) test for Autoregressive Conditional Heteroskedasticity (ARCH) in VAR models from Catani and Ahlgren (2016) <doi:10.1016/j.ecosta.2016.10.006>, and bootstrap-based methods for determining the cointegration rank from Cavaliere, Rahbek, and Taylor (2012) <doi:10.3982/ECTA9099> and Cavaliere, Rahbek, and Taylor (2014) <doi:10.1080/07474938.2013.825175>.
This package implements nested cross-validation applied to the glmnet and caret packages. With glmnet this includes cross-validation of elastic net alpha parameter. A number of feature selection filter functions (t-test, Wilcoxon test, ANOVA, Pearson/Spearman correlation, random forest, ReliefF) for feature selection are provided and can be embedded within the outer loop of the nested CV. Nested CV can be also be performed with the caret package giving access to the large number of prediction methods available in caret.
`BatchSVG` is a feature-based Quality Control (QC) to identify SVGs on spatial transcriptomics data with specific types of batch effect. Regarding to the spatial transcriptomics data experiments, the batch can be defined as "sample", "sex", and etc.The `BatchSVG` method is based on binomial deviance model (Townes et al, 2019) and applies cutoffs based on the number of standard deviation (nSD) of relative change in deviance and rank difference as the data-driven thresholding approach to detect the batch-biased outliers.
iSEEfier provides a set of functionality to quickly and intuitively create, inspect, and combine initial configuration objects. These can be conveniently passed in a straightforward manner to the function call to launch iSEE() with the specified configuration. This package currently works seamlessly with the sets of panels provided by the iSEE and iSEEu packages, but can be extended to accommodate the usage of any custom panel (e.g. from iSEEde, iSEEpathways, or any panel developed independently by the user).
An unsupervised fully-automated pipeline for transcriptome analysis or a supervised option to identify characteristic genes from predefined subclasses. We rely on the pamr <http://www.bioconductor.org/packages//2.7/bioc/html/pamr.html> clustering algorithm to cluster the Data and then draw a heatmap of the clusters with the most significant genes and the least significant genes according to the pamr algorithm. This way we get easy to grasp heatmaps that show us for each cluster which are the clusters most defining genes.
This package provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA), canonical variate analysis (CVA) and simple correspondence analysis (CA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.
Light-weight functions for computing descriptive statistics in different circular spaces (e.g., 2pi, 180, or 360 degrees), to handle angle-dependent biases, pad circular data, and more. Specifically aimed for psychologists and neuroscientists analyzing circular data. Basic methods are based on Jammalamadaka and SenGupta (2001) <doi:10.1142/4031>, removal of cardinal biases is based on the approach introduced in van Bergen, Ma, Pratte, & Jehee (2015) <doi:10.1038/nn.4150> and Chetverikov and Jehee (2023) <doi:10.1038/s41467-023-43251-w>.
Is designed to test for association between methylation at CpG sites across the genome and a phenotype of interest, adjusting for any relevant covariates. The package can perform standard analyses of large datasets very quickly with no need to impute the data. It can also handle mixed effects models with chip or batch entering the model as a random intercept. Also includes tools to apply quality control filters, perform permutation tests, and create QQ plots, manhattan plots, and scatterplots for individual CpG sites.
Given count data from two conditions, it determines which transcripts are differentially expressed across the two conditions using Bayesian inference of the parameters of a bottom-up model for PCR amplification. This model is developed in Ndifon Wilfred, Hilah Gal, Eric Shifrut, Rina Aharoni, Nissan Yissachar, Nir Waysbort, Shlomit Reich Zeliger, Ruth Arnon, and Nir Friedman (2012), <http://www.pnas.org/content/109/39/15865.full>, and results in a distribution for the counts that is a superposition of the binomial and negative binomial distribution.
Miscellaneous functions for data cleaning and data analysis of educational assessments. Includes functions for descriptive analyses, character vector manipulations and weighted statistics. Mainly a lightweight dependency for the packages eatRep', eatGADS', eatPrep and eatModel (which will be subsequently submitted to CRAN'). The function for defining (weighted) contrasts in weighted effect coding refers to te Grotenhuis et al. (2017) <doi:10.1007/s00038-016-0901-1>. Functions for weighted statistics refer to Wolter (2007) <doi:10.1007/978-0-387-35099-8>.
Calculate numerical asymptotic distribution functions of likelihood ratio statistics for fractional unit root tests and tests of cointegration rank. For these distributions, the included functions calculate critical values and P-values used in unit root tests, cointegration tests, and rank tests in the Fractionally Cointegrated Vector Autoregression (FCVAR) model. The functions implement procedures for tests described in the following articles: Johansen, S. and M. Ã . Nielsen (2012) <doi:10.3982/ECTA9299>, MacKinnon, J. G. and M. Ã . Nielsen (2014) <doi:10.1002/jae.2295>.
This package provides a local haplotyping tool for use in trait association and trait prediction analyses pipelines. HaploVar enables users take single nucleotide polymorphisms (SNPs) (in VCF format) and a linkage disequilibrium (LD) matrix, calculate local haplotypes and format the output to be compatible with a wide range of trait association and trait prediction tools. The local haplotypes are calculated from the LD matrix using a clustering algorithm called density-based spatial clustering of applications with noise ('DBSCAN') (Ester et al., 1996) <ISBN: 1577350049>.
Raster based flood modelling internally using hyd1d', an R package to interpolate 1d water level and gauging data. The package computes flood extent and duration through strategies originally developed for INFORM', an ArcGIS'-based hydro-ecological modelling framework. It does not provide a full, physical hydraulic modelling algorithm, but a simplified, near real time GIS approach for flood extent and duration modelling. Computationally demanding annual flood durations have been computed already and data products were published by Weber (2022) <doi:10.1594/PANGAEA.948042>.
R is great for installing software. Through the installr package you can automate the updating of R (on Windows, using updateR()) and install new software. Software installation is initiated through a GUI (just run installr()), or through functions such as: install.Rtools(), install.pandoc(), install.git(), and many more. The updateR() command performs the following: finding the latest R version, downloading it, running the installer, deleting the installation file, copy and updating old packages to the new R installation.
This package provides a function for classifying a landscape into different categories based on the Topographic Position Index (TPI) and slope. It offers two types of classifications: Slope Position Classification, and Landform Classification. The function internally calculates the TPI for the given landscape and then uses it along with the slope to perform the classification. Optionally, descriptive statistics for every class are calculated and plotted. The classifications are useful for identifying the position of a location on a slope and for identifying broader landform types.
Fast imputations under the object-oriented programming paradigm. Moreover there are offered a few functions built to work with popular R packages such as data.table or dplyr'. The biggest improvement in time performance could be achieve for a calculation where a grouping variable have to be used. A single evaluation of a quantitative model for the multiple imputations is another major enhancement. A new major improvement is one of the fastest predictive mean matching in the R world because of presorting and binary search.
Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package uses a Variational EM approach by approximating the posterior distribution of latent memberships and selecting hyperparameters through a pseudo-MLE procedure. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models.
This package provides tools for the structured processing of PET neuroimaging data in preparation for the estimation of Simultaneous Confidence Corridors (SCCs) for one-group, two-group, or single-patient vs group comparisons. The package facilitates PET image loading, data restructuring, integration into a Functional Data Analysis framework, contour extraction, identification of significant results, and performance evaluation. It bridges established packages (e.g., oro.nifti') with novel statistical methodologies (e.g., ImageSCC') and enables reproducible analysis pipelines, including comparison with Statistical Parametric Mapping ('SPM').
Create surface forms from matrix or raster data for flexible plotting and conversion to other mesh types. The functions quadmesh or triangmesh produce a continuous surface as a mesh3d object as used by the rgl package. This is used for plotting raster data in 3D (optionally with texture), and allows the application of a map projection without data loss and many processing applications that are restricted by inflexible regular grid rasters. There are discrete forms of these continuous surfaces available with dquadmesh and dtriangmesh functions.
Various methods for targeted and semiparametric inference including augmented inverse probability weighted (AIPW) estimators for missing data and causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>), variable importance and conditional average treatment effects (CATE) (van der Laan (2006) <doi:10.2202/1557-4679.1008>), estimators for risk differences and relative risks (Richardson et al. (2017) <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).
This package stores the data employed in the vignette of the GSVA package. These data belong to the following publications: Armstrong et al. Nat Genet 30:41-47, 2002; Cahoy et al. J Neurosci 28:264-278, 2008; Carrel and Willard, Nature, 434:400-404, 2005; Huang et al. PNAS, 104:9758-9763, 2007; Pickrell et al. Nature, 464:768-722, 2010; Skaletsky et al. Nature, 423:825-837; Verhaak et al. Cancer Cell 17:98-110, 2010; Costa et al. FEBS J, 288:2311-2331, 2021.