This package contains Probability Mass Functions, Cumulative Mass Functions, Negative Log Likelihood value, parameter estimation and modeling data using Binomial Mixture Distributions (BMD) (Manoj et al (2013) <doi:10.5539/ijsp.v2n2p24>) and Alternate Binomial Distributions (ABD) (Paul (1985) <doi:10.1080/03610928508828990>), also Journal article to use the package(<doi:10.21105/joss.01505>).
Maximum Likelihood Estimation of Stochastic Frontier Production and Cost Functions. Two specifications are available: the error components specification with time-varying efficiencies (Battese and Coelli, 1992, <doi:10.1007/BF00158774>) and a model specification in which the firm effects are directly influenced by a number of variables (Battese and Coelli, 1995, <doi:10.1007/BF01205442>).
Takes an R expression and returns a Job object with a $stop()
method which can be called to terminate the background job. Also provides timeouts and other mechanisms for automatically terminating a background job. The result of the expression is available synchronously via $result or asynchronously with callbacks or through the promises package framework.
The knockoff filter is a general procedure for controlling the false discovery rate (FDR) when performing variable selection. For more information, see the website below and the accompanying paper: Candes et al., "Panning for gold: model-X knockoffs for high-dimensional controlled variable selection", J. R. Statist. Soc. B (2018) 80, 3, pp. 551-577.
Linear dimension reduction subspaces can be uniquely defined using orthogonal projection matrices. This package provides tools to compute distances between such subspaces and to compute the average subspace. For details see Liski, E.Nordhausen K., Oja H., Ruiz-Gazen A. (2016) Combining Linear Dimension Reduction Subspaces <doi:10.1007/978-81-322-3643-6_7>.
An implementation of the Nonparametric Predictive Inference approach in R. It provides tools for quantifying uncertainty via lower and upper probabilities. It includes useful functions for pairwise and multiple comparisons: comparing two groups with and without terminated tails, selecting the best group, selecting the subset of best groups, selecting the subset including the best group.
The implementation to perform the geometric spatial point analysis developed in Hernández & Solàs (2022) <doi:10.1007/s00180-022-01244-1>. It estimates the geometric goodness-of-fit index for a set of variables against a response one based on the sf package. The package has methods to print and plot the results.
Datasets detailing the results, castaways, and events of each season of Survivor for the US, Australia, South Africa, New Zealand, and the UK. This includes details on the cast, voting history, immunity and reward challenges, jury votes, boot order, advantage details, and episode ratings. Use this for analysis of trends and statistics of the game.
Inference on panel data using spatiotemporal partially-observed Markov process (SpatPOMP
) models. The spatPomp
package extends pomp to include algorithms taking advantage of the spatial structure in order to assist with handling high dimensional processes. See Asfaw et al. (2024) <doi:10.48550/arXiv.2101.01157>
for further description of the package.
Sensitivity analysis in unmatched observational studies, with or without strata. The main functions are sen2sample()
and senstrat()
. See Rosenbaum, P. R. and Krieger, A. M. (1990), JASA, 85, 493-498, <doi:10.1080/01621459.1990.10476226> and Gastwirth, Krieger and Rosenbaum (2000), JRSS-B, 62, 545â 555 <doi:10.1111/1467-9868.00249> .
This package provides a dynamic timer control (DTC) is a shiny widget that enables time-based processes in applications. It allows users to execute these processes manually in individual steps or at customizable speeds. The timer can be paused, resumed, or restarted. This control is particularly well-suited for simulations, animations, countdowns, or interactive visualizations.
Standard error adjusted adaptive lasso (SEA-lasso) is a version of the adaptive lasso, which incorporates OLS standard error to the L1 penalty weight. This method is intended for variable selection under linear regression settings (n > p). This new weight assignment strategy is especially useful when the collinearity of the design matrix is a concern.
GDS files are widely used to represent genotyping or sequence data. The GDSArray package implements the `GDSArray` class to represent nodes in GDS files in a matrix-like representation that allows easy manipulation (e.g., subsetting, mathematical transformation) in _R_. The data remains on disk until needed, so that very large files can be processed.
The STRINGdb
package provides an R interface to the STRING protein-protein interactions database. STRING is a database of known and predicted protein-protein interactions. The interactions include direct (physical) and indirect (functional) associations. Each interaction is associated with a combined confidence score that integrates the various evidences.
Animation of observed trajectories using spline-based interpolation (see for example, Buderman, F. E., Hooten, M. B., Ivan, J. S. and Shenk, T. M. (2016), <doi:10.1111/2041-210X.12465> "A functional model for characterizing long-distance movement behaviour". Methods Ecol Evol). Intended to be used exploratory data analysis, and perhaps for preparation of presentations.
This contains helpful functions for parsing, managing, plotting, and visualizing activities, most often from GPX (GPS Exchange Format) files recorded by GPS devices. It allows easy parsing of the source files into standard R data formats, along with functions to compute derived data for the activity, and to plot the activity in a variety of ways.
Multivariate tools to analyze comparative data, i.e. a phylogeny and some traits measured for each taxa. The package contains functions to represent comparative data, compute phylogenetic proximities, perform multivariate analysis with phylogenetic constraints and test for the presence of phylogenetic autocorrelation. The package is described in Jombart et al (2010) <doi:10.1093/bioinformatics/btq292>.
This package provides tools to generate unique identifier codes and printable barcoded labels for the management of biological samples. The creation of unique ID codes and printable PDF files can be initiated by standard commands, user prompts, or through a GUI addin for R Studio. Biologically informative codes can be included for hierarchically structured sampling designs.
This package provides similar functionality to Microsoft Excel CUMPRINC function <https://support.microsoft.com/en-us/office/cumprinc-function-94a4516d-bd65-41a1-bc16-053a6af4c04d>. Returns principal remaining at a given month, principal paid in a month, and accumulated principal paid at a given month based on original loan amount, monthly interest rate, and term of loan.
Tests whether multivariate ordinal data may stem from discretizing a multivariate normal distribution. The test is described by Foldnes and Grønneberg (2019) <doi:10.1080/10705511.2019.1673168>. In addition, an adjusted polychoric correlation estimator is provided that takes marginal knowledge into account, as described by Grønneberg and Foldnes (2022) <doi:10.1037/met0000495>.
Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.
This package provides a collection of utility functions for manipulating and analyzing factor vectors in R. It offers tools for filtering, splitting, combining, and reordering factor levels based on various criteria. The package is designed to simplify common tasks in categorical data analysis, making it easier to work with factors in a flexible and efficient manner.
This package provides an interface to the financial data platform <https://datahub.limex.com/>., enabling users to retrieve real-time and historical financial data. Functions within the package allow access to instruments, candlestick charts, fundamentals, news, events, models, and trading signals. Authentication is managed through user-specific API tokens, which are securely handled via environment variables.
This package provides methods for extracting results from mixed-effect model objects fit with the lme4 package. Allows construction of prediction intervals efficiently from large scale linear and generalized linear mixed-effects models. This method draws from the simulation framework used in the Gelman and Hill (2007) textbook: Data Analysis Using Regression and Multilevel/Hierarchical Models.