This package provides functions for the design process of survey sampling, with specific tools for multi-wave and multi-phase designs. Perform optimum allocation using Neyman (1934) <doi:10.2307/2342192> or Wright (2012) <doi:10.1080/00031305.2012.733679> allocation, split strata based on quantiles or values of known variables, randomly select samples from strata, allocate sampling waves iteratively, and organize a complex survey design. Also includes a Shiny application for observing the effects of different strata splits. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v114.i10>.
This package provides tools for exploratory process data analysis. Process data refers to the data describing participants problem-solving processes in computer-based assessments. It is often recorded in computer log files. This package provides functions to read, process, and write process data. It also implements two feature extraction methods to compress the information stored in process data into standard numerical vectors. This package also provides recurrent neural network based models that relate response processes with other binary or scale variables of interest. The functions that involve training and evaluating neural networks are wrappers of functions in keras'.
This takes spatial single-cell-type RNA-seq data (specifically designed for Slide-seq v2) that calls copy number alterations (CNAs) using pseudo-spatial binning, clusters cellular units (e.g. beads) based on CNA profile, and visualizes spatial CNA patterns. Documentation about SlideCNA is included in the the pre-print by Zhang et al. (2022, <doi:10.1101/2022.11.25.517982>). The package enrichR (>= 3.0), conditionally used to annotate SlideCNA-determined clusters with gene ontology terms, can be installed at <https://github.com/wjawaid/enrichR> or with install_github("wjawaid/enrichR").
This package provides an interface to build a unified database of genomic annotations and their coordinates (gene, transcript and exon levels). It is aimed to be used when simple tab-delimited annotations (or simple GRanges objects) are required instead of the more complex annotation Bioconductor packages. Also useful when combinatorial annotation elements are reuired, such as RefSeq coordinates with Ensembl biotypes. Finally, it can download, construct and handle annotations with versioned genes and transcripts (where available, e.g. RefSeq and latest Ensembl). This is particularly useful in precision medicine applications where the latter must be reported.
InferCNV is used to explore tumor single cell RNA-Seq data to identify evidence for somatic large-scale chromosomal copy number alterations, such as gains or deletions of entire chromosomes or large segments of chromosomes. This is done by exploring expression intensity of genes across positions of a tumor genome in comparison to a set of reference "normal" cells. A heatmap is generated illustrating the relative expression intensities across each chromosome, and it often becomes readily apparent as to which regions of the tumor genome are over-abundant or less-abundant as compared to that of normal cells.
This package makes the qhull library available in R, in a similar manner as in Octave. Qhull computes convex hulls, Delaunay triangulations, halfspace intersections about a point, Voronoi diagrams, furthest-site Delaunay triangulations, and furthest-site Voronoi diagrams. It runs in 2-d, 3-d, 4-d, and higher dimensions. It implements the Quickhull algorithm for computing the convex hull. Qhull does not support constrained Delaunay triangulations, or mesh generation of non-convex objects, but the package does include some R functions that allow for this. Currently the package only gives access to Delaunay triangulation and convex hull computation.
This package provides a versatile interior point solver that solves linear programs (LPs), quadratic programs (QPs), second-order cone programs (SOCPs), semidefinite programs (SDPs), and problems with exponential and power cone constraints (https://clarabel.org/stable/). For quadratic objectives, unlike interior point solvers based on the standard homogeneous self-dual embedding (HSDE) model, Clarabel handles quadratic objective without requiring any epigraphical reformulation of its objective function. It can therefore be significantly faster than other HSDE-based solvers for problems with quadratic objective functions. Infeasible problems are detected using using a homogeneous embedding technique.
Estimation of functional spaces based on traits of organisms. The package includes functions to impute missing trait values (with or without considering phylogenetic information), and to create, represent and analyse two dimensional functional spaces based on principal components analysis, other ordination methods, or raw traits. It also allows for mapping a third variable onto the functional space. See Carmona et al. (2021) <doi:10.1038/s41586-021-03871-y>, Puglielli et al. (2021) <doi:10.1111/nph.16952>, Carmona et al. (2021) <doi:10.1126/sciadv.abf2675>, Carmona et al. (2019) <doi:10.1002/ecy.2876> for more information.
This package provides a series of numerical methods for extracting parameters of distributions for risks based on knowing the expected value and c-statistics (e.g., from a published report on the performance of a risk prediction model). This package implements the methodology described in Sadatsafavi et al (2024) <doi:10.48550/arXiv.2409.09178>. The core of the package is mcmap(), which takes a pair of (mean, c-statistic) and the distribution type requested. This function provides a generic interface to more customized functions (mcmap_beta(), mcmap_logitnorm(), mcmap_probitnorm()) for specific distributions.
Analysis of annual average ocean water level time series from long (minimum length 80 years) individual records, providing improved estimates of trend (mean sea level) and associated real-time velocities and accelerations. Improved trend estimates are based on Singular Spectrum Analysis methods. Various gap-filling options are included to accommodate incomplete time series records. The package also contains a forecasting module to consider the implication of user defined quantum of sea level rise between the end of the available historical record and the year 2100. A wide range of screen and pdf plotting options are available in the package.
Analysis of musical scales (& modes, grooves, etc.) in the vein of Sherrill 2025 <doi:10.1215/00222909-11595194>. The initials MCT in the package title refer to the article's title: "Modal Color Theory." Offers support for conventional musical pitch class set theory as developed by Forte (1973, ISBN: 9780300016109) and David Lewin (1987, ISBN: 9780300034936), as well as for the continuous geometries of Callender, Quinn, & Tymoczko (2008) <doi:10.1126/science.1153021>. Identifies structural properties of scales and calculates derived values (sign vector, color number, brightness ratio, etc.). Creates plots such as "brightness graphs" which visualize these properties.
Simulate genotypes in SNP (single nucleotide polymorphisms) Matrix as random numbers from an uniform distribution, for diploid organisms (coded by 0, 1, 2), Sikorska et al., (2013) <doi:10.1186/1471-2105-14-166>, or half-sib/full-sib SNP matrix from real or simulated parents SNP data, assuming mendelian segregation. Simulate phenotypic traits for real or simulated SNP data, controlled by a specific number of quantitative trait loci and their effects, sampled from a Normal or an Uniform distributions, assuming a pure additive model. This is useful for testing association and genomic prediction models or for educational purposes.
This package provides functions to perform most of the common analysis in genome association studies are implemented. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Permutation test and related tests (sum statistic and truncated product) are also implemented. Max-statistic and genetic risk-allele score exact distributions are also possible to be estimated. The methods are described in Gonzalez JR et al., 2007 <doi: 10.1093/bioinformatics/btm025>.
The stochastic (also called on-line) version of the Self-Organising Map (SOM) algorithm is provided. Different versions of the algorithm are implemented, for numeric and relational data and for contingency tables as described, respectively, in Kohonen (2001) <isbn:3-540-67921-9>, Olteanu & Villa-Vialaneix (2005) <doi:10.1016/j.neucom.2013.11.047> and Cottrell et al (2004) <doi:10.1016/j.neunet.2004.07.010>. The package also contains many plotting features (to help the user interpret the results), can handle (and impute) missing values and is delivered with a graphical user interface based on shiny'.
This package provides a minimalist implementation of model stacking by Wolpert (1992) <doi:10.1016/S0893-6080(05)80023-1> for boosted tree models. A classic, two-layer stacking model is implemented, where the first layer generates features using gradient boosting trees, and the second layer employs a logistic regression model that uses these features as inputs. Utilities for training the base models and parameters tuning are provided, allowing users to experiment with different ensemble configurations easily. It aims to provide a simple and efficient way to combine multiple gradient boosting models to improve predictive model performance and robustness.
This package implements methods for inference on potential waning of vaccine efficacy and for estimation of vaccine efficacy at a user-specified time after vaccination based on data from a randomized, double-blind, placebo-controlled vaccine trial in which participants may be unblinded and placebo subjects may be crossed over to the study vaccine. The methods also allow adjustment for possible confounding via inverse probability weighting through specification of models for the trial entry process, unblinding mechanisms, and the probability an unblinded placebo participant accepts study vaccine: Tsiatis, A. A. and Davidian, M. (2022) <doi:10.1111/biom.13509>.
Director is an R package designed to streamline the visualization of molecular effects in regulatory cascades. It utilizes the R package htmltools and a modified Sankey plugin of the JavaScript library D3 to provide a fast and easy, browser-enabled solution to discovering potentially interesting downstream effects of regulatory and/or co-expressed molecules. The diagrams are robust, interactive, and packaged as highly-portable HTML files that eliminate the need for third-party software to view. This enables a straightforward approach for scientists to interpret the data produced, and bioinformatics developers an alternative means to present relevant data.
MiDAS is a R package for immunogenetics data transformation and statistical analysis. MiDAS accepts input data in the form of HLA alleles and KIR types, and can transform it into biologically meaningful variables, enabling HLA amino acid fine mapping, analyses of HLA evolutionary divergence, KIR gene presence, as well as validated HLA-KIR interactions. Further, it allows comprehensive statistical association analysis workflows with phenotypes of diverse measurement scales. MiDAS closes a gap between the inference of immunogenetic variation and its efficient utilization to make relevant discoveries related to T cell, Natural Killer cell, and disease biology.
This package provides a collection of miscellaneous helper function for running multilevel/mixed models in lme4'. This package aims to provide functions to compute common tasks when estimating multilevel models such as computing the intraclass correlation and design effect, centering variables, estimating the proportion of variance explained at each level, pseudo-R squared, random intercept and slope reliabilities, tests for homogeneity of variance at level-1, and cluster robust and bootstrap standard errors. The tests and statistics reported in the package are from Raudenbush & Bryk (2002, ISBN:9780761919049), Hox et al. (2018, ISBN:9781138121362), and Snijders & Bosker (2012, ISBN:9781849202015).
This package provides tools for data-driven statistical analysis using local polynomial regression and kernel density estimation methods as described in Calonico, Cattaneo and Farrell (2018, <doi:10.1080/01621459.2017.1285776>): lprobust() for local polynomial point estimation and robust bias-corrected inference, lpbwselect() for local polynomial bandwidth selection, kdrobust() for kernel density point estimation and robust bias-corrected inference, kdbwselect() for kernel density bandwidth selection, and nprobust.plot() for plotting results. The main methodological and numerical features of this package are described in Calonico, Cattaneo and Farrell (2019, <doi:10.18637/jss.v091.i08>).
Calculate common types of tables for weighted survey data. Options include topline and (2-way and 3-way) crosstab tables of categorical or ordinal data as well as summary tables of weighted numeric variables. Optionally, include the margin of error at selected confidence intervals including the design effect. The design effect is calculated as described by Kish (1965) <doi:10.1002/bimj.19680100122> beginning on page 257. Output takes the form of tibbles (simple data frames). This package conveniently handles labelled data, such as that commonly used by Stata and SPSS. Complex survey design is not supported at this time.
This package implements two tests for same-source of toolmarks. The chumbley_non_random() test follows the paper "An Improved Version of a Tool Mark Comparison Algorithm" by Hadler and Morris (2017) <doi:10.1111/1556-4029.13640>. This is an extension of the Chumbley score as previously described in "Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm" by Chumbley et al (2010) <doi:10.1111/j.1556-4029.2010.01424.x>. fixed_width_no_modeling() is based on correlation measures in a diamond shaped area of the toolmark as described in Hadler (2017).
The model, developed at the Vienna University of Technology, is a lumped conceptual rainfall-runoff model, following the structure of the HBV model. The model can also be run in a semi-distributed fashion and with dual representation of soil layer. The model runs on a daily or shorter time step and consists of a snow routine, a soil moisture routine and a flow routing routine. See Parajka, J., R. Merz, G. Bloeschl (2007) <DOI:10.1002/hyp.6253> Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments, Hydrological Processes, 21, 435-446.
This package provides a spline based scRNA-seq method for identifying differentially variable (DV) genes across two experimental conditions. Spline-DV constructs a 3D spline from 3 key gene statistics: mean expression, coefficient of variance, and dropout rate. This is done for both conditions. The 3D spline provides the “expected” behavior of genes in each condition. The distance of the observed mean, CV and dropout rate of each gene from the expected 3D spline is used to measure variability. As the final step, the spline-DV method compares the variabilities of each condition to identify differentially variable (DV) genes.