Partitions the phenotypic variance of a plastic trait, studied through its reaction norm. The variance partition distinguishes between the variance arising from the average shape of the reaction norms (V_Plas) and the (additive) genetic variance . The latter is itself separated into an environment-blind component (V_G/V_A) and the component arising from plasticity (V_GxE/V_AxE
). The package also provides a way to further partition V_Plas into aspects (slope/curvature) of the shape of the average reaction norm (pi-decomposition) and partition V_Add (gamma-decomposition) and V_AxE
(iota-decomposition) into the impact of genetic variation in the reaction norm parameters. Reference: de Villemereuil & Chevin (2025) <doi:10.32942/X2NC8B>.
Implementation of the augmented Simulation-Extrapolation (SIMEX) algorithm proposed by Yi et al. (2015) <doi:10.1080/01621459.2014.922777> for analyzing the data with mixed measurement error and misclassification. The main function provides a similar summary output as that of glm()
function. Both parametric and empirical SIMEX are considered in the package.
Testing, Implementation, and Forecasting of the ARIMA-ANN hybrid model. The ARIMA-ANN hybrid model combines the distinct strengths of the Auto-Regressive Integrated Moving Average (ARIMA) model and the Artificial Neural Network (ANN) model for time series forecasting.For method details see Zhang, GP (2003) <doi:10.1016/S0925-2312(01)00702-0>.
Modern software often poorly support older file formats. This package intends to handle many file formats that were native to the antiquated Commodore Amiga machine. This package focuses on file types from the older Amiga operating systems (<= 3.0). It will read and write specific file formats and coerces them into more contemporary data.
Batch process large language model (LLM) text completions using data frame rows, with support for OpenAI's
GPT (<https://chat.openai.com>), Anthropic's Claude (<https://claude.ai>), and Google's Gemini (<https://gemini.google.com>). Includes features such as local storage, metadata logging, API rate limiting delays, and a shiny app addin.
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.
An efficient cross-validated approach for covariance matrix estimation, particularly useful in high-dimensional settings. This method relies upon the theory of high-dimensional loss-based covariance matrix estimator selection developed by Boileau et al. (2022) <doi:10.1080/10618600.2022.2110883> to identify the optimal estimator from among a prespecified set of candidates.
Hansen's (1995) Covariate-Augmented Dickey-Fuller (CADF) test. The only required argument is y, the Tx1 time series to be tested. If no stationary covariate X is passed to the procedure, then an ordinary ADF test is performed. The p-values of the test are computed using the procedure illustrated in Lupi (2009).
Implementation of uniformly most powerful invariant equivalence tests for one- and two-sample problems (paired and unpaired) as described in Wellek (2010, ISBN:978-1-4398-0818-4). Also one-sided alternatives (non-inferiority and non-superiority tests) are supported. Basically a variant of a t-test with (relaxed) null and alternative hypotheses exchanged.
Basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both. It follows the bias analysis methods and examples from the book by Fox M.P., MacLehose
R.F., and Lash T.L. "Applying Quantitative Bias Analysis to Epidemiologic Data, second ed.", ('Springer', 2021).
The correlations and linkage disequilibrium between tests can vary as a function of minor allele frequency thresholds used to filter variants, and also varies with different choices of test statistic for region-based tests. Appropriate genome-wide significance thresholds can be estimated empirically through permutation on only a small proportion of the whole genome.
This package provides functions to estimate model parameters and forecast future volatilities using the Unified GARCH-Ito [Kim and Wang (2016) <doi:10.1016/j.jeconom.2016.05.003>] and Realized GARCH-Ito [Song et. al. (2020) <doi:10.1016/j.jeconom.2020.07.007>] models. Optimization is done using augmented Lagrange multiplier method.
Create plots that combine a phylogeny and frequency dynamics. Phylogenetic input can be a generic adjacency matrix or a tree of class "phylo". Inspired by similar plots in publications of the labs of RE Lenski and JE Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose code this package exploits).
Computes the solution path for generalized lasso problems. Important use cases are the fused lasso over an arbitrary graph, and trend fitting of any given polynomial order. Specialized implementations for the latter two subproblems are given to improve stability and speed. See Taylor Arnold and Ryan Tibshirani (2016) <doi:10.1080/10618600.2015.1008638>.
The HistData
package provides a collection of small data sets that are interesting and important in the history of statistics and data visualization. The goal of the package is to make these available, both for instructional use and for historical research. Some of these present interesting challenges for graphics or analysis in R.
Create small multiples of several leaflet web maps with (optional) synchronised panning and zooming control. When syncing is enabled all maps respond to mouse actions on one map. This allows side-by-side comparisons of different attributes of the same geometries. Syncing can be adjusted so that any combination of maps can be synchronised.
The MIMS-unit algorithm is developed to compute Monitor Independent Movement Summary Unit, a measurement to summarize raw accelerometer data while ensuring harmonized results across different devices. It also includes scripts to reproduce results in the related publication (John, D., Tang. Q., Albinali, F. and Intille, S. (2019) <doi:10.1123/jmpb.2018-0068>).
Use the paged media properties in CSS and the JavaScript
library paged.js to split the content of an HTML document into discrete pages. Each page can have its page size, page numbers, margin boxes, and running headers, etc. Applications of this package include books, letters, reports, papers, business cards, resumes, and posters.
This package provides a very small package for more convenient use of NaileR
'. You provide a data set containing a latent variable you want to understand. It generates a description and an interpretation of this latent variable using a Large Language Model. For perceptual data, it describes the stimuli used in the experiment.
By adding dependencies to the "Suggests" field of a package's DESCRIPTION file, and then declaring that they are needed within any dependent functionality, it is often possible to significantly reduce the number of "hard" dependencies required by a package. This package provides a minimal way to declare when a suggested package is needed.
This package provides utilities for generating SQL queries (particularly CREATE TABLE statements) from R model objects. The most important use case is generating SQL to score a generalized linear model or related model represented as an R object, in which case the package handles parsing formula operators and including the model's response function.
Fits Bayesian spatio-temporal models and makes predictions on stream networks using the approach by Santos-Fernandez, Edgar, et al. (2022)."Bayesian spatio-temporal models for stream networks". <arXiv:2103.03538>
. In these models, spatial dependence is captured using stream distance and flow connectivity, while temporal autocorrelation is modelled using vector autoregression methods.
Population genetics package for designing diagnostic panels. Candidate markers, marker combinations, and different panel sizes are assessed for how well they can predict the source population of known samples. Requires a genotype file of candidate markers in STRUCTURE format. Methods for population cross-validation are described in Jombart (2008) <doi:10.1093/bioinformatics/btn129>.
Operators and functions provided by base R sometimes lack some features found in other programming languages, such as the ability to concatenate strings using + or to repeat strings using *. This package aims at providing such functionality without breaking existing code, i.e., only statements, that would throw errors in pure base R are patched.