The EM algorithm is a powerful tool for computing maximum likelihood estimates with incomplete data. This package will help to applying EM algorithm based on triangular and trapezoidal fuzzy numbers (as two kinds of incomplete data). A method is proposed for estimating the unknown parameter in a parametric statistical model when the observations are triangular or trapezoidal fuzzy numbers. This method is based on maximizing the observed-data likelihood defined as the conditional probability of the fuzzy data; for more details and formulas see Denoeux (2011) <doi:10.1016/j.fss.2011.05.022>.
This package provides a shiny-based front end (the ExPanD app) and a set of functions for exploratory data analysis. Run as a web-based app, ExPanD enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of ExPanD and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use ExPanD and/or the functions of this package.
Identifying labeled compounds in a 13C-tracer experiment in non-targeted fashion is a cumbersome process. This package facilitates such type of analyses by providing high level quality control plots, deconvoluting and evaluating spectra and performing a multitude of tests in an automatic fashion. The main idea is to use changing intensity ratios of ion pairs from peak list generated with xcms as candidates and evaluate those against base peak chromatograms and spectra information within the raw measurement data automatically. The functionality is described in Hoffmann et al. (2018) <doi:10.1021/acs.analchem.8b00356>.
Dealing with neutrosophic data of the form N=D+I(where N is a Neutrosophic number ,D is the determinant part of the number and I is the indeterminacy part) using the neutrosophic two way anova test keeps the type I error low. This algorithm calculates the fisher statistics when we have a neutrosophic data, also tests two hypothesizes, first is to test differences between treatments, and second is to test differences between sectors. For more information see Miari, Mahmoud; Anan, Mohamad Taher; Zeina, Mohamed Bisher(2022) <https://www.americaspg.com/articleinfo/21/show/1058>.
Normative data are often used to estimate the relative position of a raw test score in the population. This package allows for deriving regression-based normative data. It includes functions that enable the fitting of regression models for the mean and residual (or variance) structures, test the model assumptions, derive the normative data in the form of normative tables or automatic scoring sheets, and estimate confidence intervals for the norms. This package accompanies the book Van der Elst, W. (2024). Regression-based normative data for psychological assessment. A hands-on approach using R. Springer Nature.
The comprehensive knowledge of epigenetic modifications in plants, encompassing histone modifications in regulating gene expression, is not completely ingrained. It is noteworthy that histone deacetylation and histone H3 lysine 27 trimethylation (H3K27me3) play a role in repressing transcription in eukaryotes. In contrast, histone acetylation (H3K9ac) and H3K4me3 have been inevitably linked to the stimulation of gene expression, which significantly influences plant development and plays a role in plant responses to biotic and abiotic stresses. To our knowledge this the first multiclass classifier for predicting histone modification in plants. <doi:10.1186/s12864-019-5489-4>.
Datetimes and timestamps are invariably an imprecise notation, with any partial representation implying some amount of uncertainty. To handle this, parttime provides classes for embedding partial missingness as a central part of its datetime classes. This central feature allows for more ergonomic use of datetimes for challenging datetime computation, including calculations of overlapping date ranges, imputations, and more thoughtful handling of ambiguity that arises from uncertain time zones. This package was developed first and foremost with pharmaceutical applications in mind, but aims to be agnostic to application to accommodate general use cases just as conveniently.
The goal of PlotFTIR is to easily and quickly kick-start the production of journal-quality Fourier Transform Infra-Red (FTIR) spectral plots in R using ggplot2'. The produced plots can be published directly or further modified by ggplot2 functions. L'objectif de PlotFTIR est de démarrer facilement et rapidement la production des tracés spectraux de spectroscopie infrarouge à transformée de Fourier (IRTF) de qualité journal dans R à l'aide de ggplot2'. Les tracés produits peuvent être publiés directement ou modifiés davantage par les fonctions ggplot2'.
Researchers working with Qualitative Comparative Analysis (QCA) can use the package to estimate power of a sufficient term using permutation tests. A term can be anything: A condition, conjunction or disjunction of any combination of these. The package further allows users to plot the estimation results and to estimate the number of cases required to achieve a certain level of power, given a prespecified null and alternative hypothesis. Reference for the article introducing power estimation for QCA is: Rohlfing, Ingo (2018) <doi:10.1017/pan.2017.30> (ungated version: <doi:10.17605/OSF.IO/PC4DF>).
It allows to rapidly compute, bootstrap and plot up to fourth-order Sobol'-based sensitivity indices using several state-of-the-art first and total-order estimators. Sobol indices can be computed either for models that yield a scalar as a model output or for systems of differential equations. The package also provides a suit of benchmark tests functions and several options to obtain publication-ready figures of the model output uncertainty and sensitivity-related analysis. An overview of the package can be found in Puy et al. (2022) <doi:10.18637/jss.v102.i05>.
Dual interfaces, graphical and programmatic, designed for intuitive applications of Multilevel Regression and Poststratification (MRP). Users can apply the method to a variety of datasets, from electronic health records to sample survey data, through an end-to-end Bayesian data analysis workflow. The package provides robust tools for data cleaning, exploratory analysis, flexible model building, and insightful result visualization. For more details, see Si et al. (2020) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2020002/article/00003-eng.pdf?st=iF1_Fbrh> and Si (2025) <doi:10.1214/24-STS932>.
This package provides a user-friendly R shiny app for performing various statistical tests on datasets. It allows users to upload data in numerous formats and perform statistical analyses. The app dynamically adapts its options based on the selected columns and supports both single and multiple column comparisons. The app's user interface is designed to streamline the process of selecting datasets, columns, and test options, making it easy for users to explore and interpret their data. The underlying functions for statistical tests are well-organized and can be used independently within other R scripts.
This package AMARETTO represents an algorithm that integrates copy number, DNA methylation and gene expression data to identify a set of driver genes by analyzing cancer samples and connects them to clusters of co-expressed genes, which we define as modules. AMARETTO can be applied in a pancancer setting to identify cancer driver genes and their modules on multiple cancer sites. AMARETTO captures modules enriched in angiogenesis, cell cycle and EMT, and modules that accurately predict survival and molecular subtypes. This allows AMARETTO to identify novel cancer driver genes directing canonical cancer pathways.
This package provides a lightweight unit testing framework. Main features:
install tests with the package;
test results are treated as data that can be stored and manipulated;
test files are R scripts interspersed with test commands, that can be programmed over;
fully automated build-install-test sequence for packages;
skip tests when not run locally (e.g. on CRAN);
flexible and configurable output printing;
compare computed output with output stored with the package;
run tests in parallel;
extensible by other packages;
report side effects.
Color and visualize wildlife distributions in space-time using raster data. In addition to enabling display of sequential change in distributions through the use of small multiples, colorist provides functions for extracting several features of interest from a sequence of distributions and for visualizing those features using HCL (hue-chroma-luminance) color palettes. Resulting maps allow for "fair" visual comparison of intensity values (e.g., occurrence, abundance, or density) across space and time and can be used to address questions about where, when, and how consistently a species, group, or individual is likely to be found.
Enables the construction of flexible urban delineations that can be tailored to specific applications or research questions, see Van Migerode et al. (2024) <DOI:10.1177/23998083241262545> and Van Migerode et al. (2025) <DOI:10.5281/zenodo.15173220>. Originally developed to flexibly reconstruct the Degree of Urbanisation classification of cities, towns and rural areas developed by Dijkstra et al. (2021) <DOI:10.1016/j.jue.2020.103312>. Now it also support a broader range of delineation approaches, using multiple datasets â including population, built-up area, and night-time light grids â and different thresholding methods.
This package implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.
Stratigraphic ranges of fossil marine animal genera from Sepkoski's (2002) published compendium. No changes have been made to any taxonomic names. However, first and last appearance intervals have been updated to be consistent with stages of the International Geological Timescale. Functionality for generating a plot of Sepkoski's evolutionary fauna is also included. For specific details on the compendium see: Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, pp. 1â 560 (ISBN 0-87710-450-6). Access: <https://www.biodiversitylibrary.org/item/40634#page/5/mode/1up>.
This is an interface for the Python package StepMix'. It is a Python package following the scikit-learn API for model-based clustering and generalized mixture modeling (latent class/profile analysis) of continuous and categorical data. StepMix handles missing values through Full Information Maximum Likelihood (FIML) and provides multiple stepwise Expectation-Maximization (EM) estimation methods based on pseudolikelihood theory. Additional features include support for covariates and distal outcomes, various simulation utilities, and non-parametric bootstrapping, which allows inference in semi-supervised and unsupervised settings. Software paper available at <doi:10.18637/jss.v113.i08>.
Genomic alterations including single nucleotide substitution, copy number alteration, etc. are the major force for cancer initialization and development. Due to the specificity of molecular lesions caused by genomic alterations, we can generate characteristic alteration spectra, called signature (Wang, Shixiang, et al. (2021) <DOI:10.1371/journal.pgen.1009557> & Alexandrov, Ludmil B., et al. (2020) <DOI:10.1038/s41586-020-1943-3> & Steele Christopher D., et al. (2022) <DOI:10.1038/s41586-022-04738-6>). This package helps users to extract, analyze and visualize signatures from genomic alteration records, thus providing new insight into cancer study.
This package implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>). Covariance tapering (Furrer et al. (2006) <doi:10.1198/106186006X132178>) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) <doi:10.1080/13658816.2022.2097684>). The package and its capabilities are described in (Dambon et al. (2021c) <doi:10.48550/arXiv.2106.02364>).
Interactive tools for generating random samples. Users select an .xlsx, .csv, or delimited .txt file with population data and are walked through selecting the sample type (Simple Random Sample or Stratified), the number of backups desired, and a "stratify_on" value (if desired). The sample size is determined using a normal approximation to the hypergeometric distribution based on Nicholson (1956) <doi:10.1214/aoms/1177728270>. An .xlsx file is created with the sample and key metadata for reference. It is menu-driven and lets users pick an output directory. See vignettes for a detailed walk-through.
This package implements time series clustering along with optimized techniques related to the dynamic time warping distance and its corresponding lower bounds. The implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole clustering are available. Functionality can be easily extended with custom distance measures and centroid definitions. Implementations of DTW barycenter averaging, a distance based on global alignment kernels, and the soft-DTW distance and centroid routines are also provided. All included distance functions have custom loops optimized for the calculation of cross-distance matrices, including parallelization support. Several cluster validity indices are included.
This package provides a statistical tool to inference the multi-level partial correlations based on multi-subject time series data, especially for brain functional connectivity. It combines both individual and population level inference by using the methods of Qiu and Zhou. (2021)<DOI: 10.1080/01621459.2021.1917417> and Genovese and Wasserman. (2006)<DOI: 10.1198/016214506000000339>. It realizes two reliable estimation methods of partial correlation coefficients, using scaled lasso and lasso. It can be used to estimate individual- or population-level partial correlations, identify nonzero ones, and find out unequal partial correlation coefficients between two populations.