Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods by Steinhauser et al. (2016) <DOI:10.1186/s12874-016-0196-1> for meta-analysis of diagnostic accuracy studies with several cutpoints.
An R DataBase Interface ('DBI') compatible interface to various database platforms ('PostgreSQL', Oracle', Microsoft SQL Server', Amazon Redshift', Microsoft Parallel Database Warehouse', IBM Netezza', Apache Impala', Google BigQuery', Snowflake', Spark', SQLite', and InterSystems IRIS'). Also includes support for fetching data as Andromeda objects. Uses either Java Database Connectivity ('JDBC') or other DBI drivers to connect to databases.
Generally, most of the packages specify the probability density function, cumulative distribution function, quantile function, and random numbers generation of the probability distributions. The present package allows to compute some important distributional properties, including the first four ordinary and central moments, Pearson's coefficient of skewness and kurtosis, the mean and variance, coefficient of variation, median, and quartile deviation at some parametric values of several well-known and extensively used probability distributions.
Work with data on Venetian doges and dogaresse and the noble families of the Republic of Venice, and use it for social network analysis, as used in Merelo (2022) <doi:10.48550/arXiv.2209.07334>.
Fast, flexible and user-friendly tools for distribution comparison through direct density ratio estimation. The estimated density ratio can be used for covariate shift adjustment, outlier-detection, change-point detection, classification and evaluation of synthetic data quality. The package implements multiple non-parametric estimation techniques (unconstrained least-squares importance fitting, ulsif(), Kullback-Leibler importance estimation procedure, kliep(), spectral density ratio estimation, spectral(), kernel mean matching, kmm(), and least-squares hetero-distributional subspace search, lhss()). with automatic tuning of hyperparameters. Helper functions are available for two-sample testing and visualizing the density ratios. For an overview on density ratio estimation, see Sugiyama et al. (2012) <doi:10.1017/CBO9781139035613> for a general overview, and the help files for references on the specific estimation techniques.
This package provides a comprehensive toolkit for analyzing microscopy data output from QuPath software. Provides functionality for automated data processing, metadata extraction, and statistical analysis of imaging results. The methodology implemented in this package is based on Labrosse et al. (2024) <doi:10.1016/j.xpro.2024.103274> "Protocol for quantifying drug sensitivity in 3D patient-derived ovarian cancer models", which describes the complete workflow for drug sensitivity analysis in patient-derived cancer models.
This package performs parametric and non-parametric estimation and simulation of drifting semi-Markov processes. The definition of parametric and non-parametric model specifications is also possible. Furthermore, three different types of drifting semi-Markov models are considered. These models differ in the number of transition matrices and sojourn time distributions used for the computation of a number of semi-Markov kernels, which in turn characterize the drifting semi-Markov kernel. For the parametric model estimation and specification, several discrete distributions are considered for the sojourn times: Uniform, Poisson, Geometric, Discrete Weibull and Negative Binomial. The non-parametric model specification makes no assumptions about the shape of the sojourn time distributions. Semi-Markov models are described in: Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>. Drifting Markov models are described in: Vergne, N. (2008) <doi:10.2202/1544-6115.1326>. Reliability indicators of Drifting Markov models are described in: Barbu, V. S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8>. We acknowledge the DATALAB Project <https://lmrs-num.math.cnrs.fr/projet-datalab.html> (financed by the European Union with the European Regional Development fund (ERDF) and by the Normandy Region) and the HSMM-INCA Project (financed by the French Agence Nationale de la Recherche (ANR) under grant ANR-21-CE40-0005).
Concept drift refers to the change in the data distribution or in the relationships between variables over time. drifter calculates distances between variable distributions or variable relations and identifies both types of drift. Key functions are: calculate_covariate_drift() checks distance between corresponding variables in two datasets, calculate_residuals_drift() checks distance between residual distributions for two models, calculate_model_drift() checks distance between partial dependency profiles for two models, check_drift() executes all checks against drift. drifter is a part of the DrWhy.AI universe (Biecek 2018) <arXiv:1806.08915>.
Compare detrital zircon suites by uploading univariate, U-Pb age, or bivariate, U-Pb age and Lu-Hf data, in a shiny'-based user-interface. Outputs publication quality figures using ggplot2', and tables of statistics currently in use in the detrital zircon geochronology community.
This package provides a convenient API interface to access immunological data within the CAVD DataSpace'(<https://dataspace.cavd.org>), a data sharing and discovery tool that facilitates exploration of HIV immunological data from pre-clinical and clinical HIV vaccine studies.
This package contains data sets, examples and software from the Second Edition of "Design of Observational Studies"; see Rosenbaum, P.R. (2010) <doi:10.1007/978-1-4419-1213-8>.
Converting date ranges into dating steps eases the visualization of changes in e.g. pottery consumption, style and other variables over time. This package provides tools to process and prepare data for visualization and employs the concept of aoristic analysis.
This package provides tools to identify, quantify, analyze, and visualize growth suppression events in tree rings that are often produced by insect defoliation. Described in Guiterman et al. (2020) <doi:10.1016/j.dendro.2020.125750>.
RStudio as of recently offers the option to define addins and assign shortcuts to them. This package contains addins for a few most frequently used functions in a data scientist's (at least mine) daily work (like str(), example(), plot(), head(), view(), Desc()). Most of these functions will use the current selection in the editor window and send the specific command to the console while instantly executing it. Assigning shortcuts to these addins will save you quite a few keystrokes.
Implementation of DetMCD, a new algorithm for robust and deterministic estimation of location and scatter. The benefits of robust and deterministic estimation are explained in Hubert, Rousseeuw and Verdonck (2012) <doi:10.1080/10618600.2012.672100>.
This package provides functions for deep learning estimation of Conditional Average Treatment Effects (CATEs) from meta-learner models and Population Average Treatment Effects on the Treated (PATT) in settings with treatment noncompliance using reticulate, TensorFlow and Keras3. Functions in the package also implements the conformal prediction framework that enables computation and illustration of conformal prediction (CP) intervals for estimated individual treatment effects (ITEs) from meta-learner models. Additional functions in the package permit users to estimate the meta-learner CATEs and the PATT in settings with treatment noncompliance using weighted ensemble learning via the super learner approach and R neural networks.
This package creates a Dumbbell Plot.
Reaction rate dynamics can be retrieved from metabolite concentration time courses. User has to provide corresponding stoichiometric matrix but not a regulation model (Michaelis-Menten or similar). Instead of solving an ordinary differential equation (ODE) system describing the evolution of concentrations, we use B-splines to catch the concentration and rate dynamics then solve a least square problem on their coefficients with non-negativity (and optionally monotonicity) constraints. Constraints can be also set on initial values of concentration. The package dynafluxr can be used as a library but also as an application with command line interface dynafluxr::cli("-h") or graphical user interface dynafluxr::gui().
This package provides a set of tools for empirical analysis of diversity (a number and frequency of different types in a population) and similarity (a number and frequency of shared types in two populations) in biological or ecological systems.
This package provides functions to run the CRM and TITE-CRM in phase I trials and calibration tools for trial planning purposes.
Estimation of Difference-in-Differences (DiD) estimators from de Chaisemartin et al. (2025) <doi:10.48550/arXiv.2405.04465> in Heterogeneous Adoption Designs with Quasi Untreated Groups.
Implement DiSTATIS and CovSTATIS (three-way multidimensional scaling). DiSTATIS and CovSTATIS are used to analyze multiple distance/covariance matrices collected on the same set of observations. These methods are based on Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M. (2012) <doi:10.1002/wics.198>.
Fit a Poisson regression to carcass distance data and integrate over the searched area at a wind farm to estimate the fraction of carcasses falling in the searched area and format the output for use as the dwp parameter in the GenEst or eoa package for estimating bird and bat mortality, following Dalthorp, et al. (2022) <arXiv:2201.10064>.
Generate reports that enable quick visual review of temporal shifts in record-level data. Time series plots showing aggregated values are automatically created for each data field (column) depending on its contents (e.g. min/max/mean values for numeric data, no. of distinct values for categorical data), as well as overviews for missing values, non-conformant values, and duplicated rows. The resulting reports are shareable and can contribute to forming a transparent record of the entire analysis process. It is designed with Electronic Health Records in mind, but can be used for any type of record-level temporal data (i.e. tabular data where each row represents a single "event", one column contains the "event date", and other columns contain any associated values for the event).