This package provides a shiny interface for a simpler use of the sbm R package. It also contains useful functions to easily explore the sbm package results. With this package you should be able to use the stochastic block model without any knowledge in R, get automatic reports and nice visuals, as well as learning the basic functions of sbm'.
Graphical tools for visualizing high-dimensional data along a path of alternating one- and two-dimensional plots. Note that this includes interactive graphics plots based on loon in turn based on tcltk (included as part of the standard R distribution). It also requires graph from Bioconductor. For more detail on use and algorithms, see <doi:10.18637/jss.v095.i04>.
Microarray expression matrix platform GPL6106 and clinical data for 67 septicemic patients and made them available as GEO accession [GSE13015](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13015). GSE13015 data have been parsed into a SummarizedExperiment
object available in ExperimentHub
. This data data could be used as an example supporting BloodGen3Module
R package.
The sparse nature of single cell epigenomics data can be overruled using probabilistic modelling methods such as Latent Dirichlet Allocation (LDA). This package allows the probabilistic modelling of cis-regulatory topics (cisTopics) from single cell epigenomics data, and includes functionalities to identify cell states based on the contribution of cisTopics and explore the nature and regulatory proteins driving them.
This package is a usability wrapper around snow for easier development of parallel R programs. This package offers e.g. extended error checks, and additional functions. All functions work in sequential mode, too, if no cluster is present or wished. The package is also designed as connector to the cluster management tool sfCluster
, but can also used without it.
This package provides a toolkit for all URL-handling needs, including encoding and decoding, parsing, parameter extraction and modification. All functions are designed to be both fast and entirely vectorized. It is intended to be useful for people dealing with web-related datasets, such as server-side logs, although may be useful for other situations involving large sets of URLs.
This package provides a variable selection method using B-Splines in multivariate nOnparametric
Regression models Based on partial dErivatives
Regularization (ABSORBER) implements a novel variable selection method in a nonlinear multivariate model using B-splines. For further details we refer the reader to the paper Savino, M. E. and Lévy-Leduc, C. (2024), <https://hal.science/hal-04434820>.
This package provides a quick method for visualizing non-aggregated line-list or aggregated census data stratified by age and one or two categorical variables (e.g. gender and health status) with any number of values. It returns a ggplot object, allowing the user to further customize the output. This package is part of the R4Epis project <https://r4epis.netlify.app/>.
It performs All-Resolutions Inference (ARI) on functional Magnetic Resonance Image (fMRI
) data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis. The method is described in Rosenblatt, Finos, Weeda, Solari, Goeman (2018) <doi:10.1016/j.neuroimage.2018.07.060>.
This package provides an alternative approach to aoristic analyses for archaeological datasets by fitting Bayesian parametric growth models and non-parametric random-walk Intrinsic Conditional Autoregressive (ICAR) models on time frequency data (Crema (2024)<doi:10.1111/arcm.12984>). It handles event typo-chronology based timespans defined by start/end date as well as more complex user-provided vector of probabilities.
Autosimilarity curves, standardization of spatial extent, dissimilarity indexes that overweight rare species, phylogenetic and functional (pairwise and multisample) dissimilarity indexes and nestedness for phylogenetic, functional and other diversity metrics. The methods for phylogenetic and functional nestedness is described in Melo, Cianciaruso and Almeida-Neto (2014) <doi:10.1111/2041-210X.12185>. This should be a complement to available packages, particularly vegan'.
Extends the functionality of other plotting packages (notably ggplot2') to help facilitate the plotting of data over long time intervals, including, but not limited to, geological, evolutionary, and ecological data. The primary goal of deeptime is to enable users to add highly customizable timescales to their visualizations. Other functions are also included to assist with other areas of deep time visualization.
It allows to learn the structure of univariate time series, learning parameters and forecasting. Implements a model of Dynamic Bayesian Networks with temporal windows, with collections of linear regressors for Gaussian nodes, based on the introductory texts of Korb and Nicholson (2010) <doi:10.1201/b10391> and Nagarajan, Scutari and Lèbre (2013) <doi:10.1007/978-1-4614-6446-4>.
Univariate and multivariate methods for compositional data analysis, based on logratios. The package implements the approach in the book Compositional Data Analysis in Practice by Michael Greenacre (2018), where accent is given to simple pairwise logratios. Selection can be made of logratios that account for a maximum percentage of logratio variance. Various multivariate analyses of logratios are included in the package.
Augments the eiCompare
package's Racially Polarized Voting (RPV) functionality to streamline analyses and visualizations used to support voting rights and redistricting litigation. The package implements methods described in Barreto, M., Collingwood, L., Garcia-Rios, S., & Oskooii, K. A. (2022). "Estimating Candidate Support in Voting Rights Act Cases: Comparing Iterative EI and EI-RÃ C Methods" <doi:10.1177/0049124119852394>.
Estimates power by simulation for multivariate abundance data to be used for sample size estimates. Multivariate equivalence testing by simulation from a Gaussian copula model. The package also provides functions for parameterising multivariate effect sizes and simulating multivariate abundance data jointly. The discrete Gaussian copula approach is described in Popovic et al. (2018) <doi:10.1016/j.jmva.2017.12.002>.
Computes the expectation of the number of transmissions and receptions considering a Hop-by-Hop transport model with limited number of retransmissions per packet. It provides the theoretical results shown in Palma et. al.(2016) <DOI:10.1109/TLA.2016.7555237> and also estimated values based on Monte Carlo simulations. It is also possible to consider random data and ACK probabilities.
Kernel-based Tweedie compound Poisson gamma model using high-dimensional predictors for the analyses of zero-inflated response variables. The package features built-in estimation, prediction and cross-validation tools and supports choice of different kernel functions. For more details, please see Yi Lian, Archer Yi Yang, Boxiang Wang, Peng Shi & Robert William Platt (2023) <doi:10.1080/00401706.2022.2156615>.
Extends the functionality of the tourr package by an interactive graphical user interface. The interactivity allows users to effortlessly refine their tourr results by manual intervention, which allows for integration of expert knowledge and aids the interpretation of results. For more information on tourr see Wickham et. al (2011) <doi:10.18637/jss.v040.i02> or <https://github.com/ggobi/tourr>.
This package implements a local likelihood estimator for the dependence parameter in bivariate conditional copula models. Copula family and local likelihood bandwidth parameters are selected by leave-one-out cross-validation. The models are implemented in TMB', meaning that the local score function is efficiently calculated via automated differentiation (AD), such that quasi-Newton algorithms may be used for parameter estimation.
This package provides the facility to calculate non-isotropic accumulated cost surface, least-cost paths, least-cost corridors, least-cost networks using a number of human-movement-related cost functions that can be selected by the user. It just requires a Digital Terrain Model, a start location and (optionally) destination locations. See Alberti (2019) <doi:10.1016/j.softx.2019.100331>.
This package provides a metadata structure for clinical data analysis and reporting based on Analysis Data Model (ADaM
) datasets. The package simplifies clinical analysis and reporting tool development by defining standardized inputs, outputs, and workflow. The package can be used to create analysis and reporting planning grid, mock table, and validated analysis and reporting results based on consistent inputs.
For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA
). See the reference section of GitHub
README.md <https://github.com/rikenbit/mwTensor>
, for details of the methods.
Implementation of Sequential BATTing (bootstrapping and aggregating of thresholds from trees) for developing threshold-based multivariate (prognostic/predictive) biomarker signatures. Variable selection is automatically built-in. Final signatures are returned with interaction plots for predictive signatures. Cross-validation performance evaluation and testing dataset results are also output. Detail algorithms are described in Huang et al (2017) <doi:10.1002/sim.7236>.