This package implements Mander & Thompson's (2010) <doi:10.1016/j.cct.2010.07.008> methods for two-stage designs optimal under the alternative hypothesis for phase II [cancer] trials. Also provides an implementation of Simon's (1989) <doi:10.1016/0197-2456(89)90015-9> original methodology and allows exploration of the operating characteristics of sub-optimal designs.
Simplify the exploratory data analysis process for multiple network data sets with the help of hierarchical clustering, consensus clustering and heatmaps. Multiple network data consists of multiple disjoint networks that have common variables (e.g. ego networks). This package contains the necessary tools for exploring such data, from the data pre-processing stage to the creation of dynamic visualizations.
Routines for fitting and simulating data under autoregressive fractionally integrated moving average (ARFIMA) models, without the constraint of covariance stationarity. Two fitting methods are implemented, a pseudo-maximum likelihood method and a minimum distance estimator. Mayoral, L. (2007) <doi:10.1111/j.1368-423X.2007.00202.x>. Beran, J. (1995) <doi:10.1111/j.2517-6161.1995.tb02054.x>.
Fits sphere-sphere regression models by estimating locally weighted rotations. Simulation of sphere-sphere data according to non-rigid rotation models. Provides methods for bias reduction applying iterative procedures within a Newton-Raphson learning scheme. Cross-validation is exploited to select smoothing parameters. See Marco Di Marzio, Agnese Panzera & Charles C. Taylor (2018) <doi:10.1080/01621459.2017.1421542>.
In gene sequencing methods, the topological features of protein-protein interaction (PPI) networks are often used, such as ToppNet
<https://toppgene.cchmc.org>. In this study, a candidate gene prioritization method was proposed for non-communicable diseases considering disease risks transferred between genes in weighted disease PPI networks with weights for nodes and edges based on functional information.
Adds support for the English language to the sylly package. Due to some restrictions on CRAN, the full package sources are only available from the project homepage. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please consider subscribing to the koRpus-dev
mailing list (<http://korpusml.reaktanz.de>).
Monitoring of Adverse Event (AE) reporting in clinical trials is important for patient safety. Sites that are under-reporting AEs can be detected using Bootstrap-based simulations that simulate overall AE reporting. Based on the simulation an AE under-reporting probability is assigned to each site in a given trial (Koneswarakantha 2021 <doi:10.1007/s40264-020-01011-5>).
Simulate and plot general experimental crosses. The focus is on simulating genotypes with an aim towards flexibility rather than speed. Meiosis is simulated following the Stahl model, in which chiasma locations are the superposition of two processes: a proportion p coming from a process exhibiting no interference, and the remainder coming from a process following the chi-square model.
This package provides a toolbox for constructing potential landscapes for dynamical systems using Monte Carlo simulation. The method is based on the potential landscape definition by Wang et al. (2008) <doi:10.1073/pnas.0800579105> (also see Zhou & Li, 2016 <doi:10.1063/1.4943096> for further mathematical discussions) and can be used for a large variety of models.
Utils for basic statistical experiments, that can be used for teaching introductory statistics. Each experiment generates a tibble. Dice rolls and coin flips are simulated using sample()
. The properties of the dice can be changed, like the number of sides. A coin flip is simulated using a two sided dice. Experiments can be combined with the pipe-operator.
This is a collection of tools for conducting both basic and advanced statistical power analysis including correlation, proportion, t-test, one-way ANOVA, two-way ANOVA, linear regression, logistic regression, Poisson regression, mediation analysis, longitudinal data analysis, structural equation modeling and multilevel modeling. It also serves as the engine for conducting power analysis online at <https://webpower.psychstat.org>.
Use behavioural variables to compute period, rhythmicity and other circadian parameters. Methods include computation of chi square periodograms (Sokolove and Bushell (1978) <DOI:10.1016/0022-5193(78)90022-X>), Lomb-Scargle periodograms (Lomb (1976) <DOI:10.1007/BF00648343>, Scargle (1982) <DOI:10.1086/160554>, Ruf (1999) <DOI:10.1076/brhm.30.2.178.1422>), and autocorrelation-based periodograms.
This package conveniently wraps all functions needed to reproduce the figures in the IHW paper (https://www.nature.com/articles/nmeth.3885) and the data analysis in https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12411, cf. the arXiv
preprint (http://arxiv.org/abs/1701.05179). Thus it is a companion package to the Bioconductor IHW package.
mitology allows to study the mitochondrial activity throught high-throughput RNA-seq data. It is based on a collection of genes whose proteins localize in to the mitochondria. From these, mitology provides a reorganization of the pathways related to mitochondria activity from Reactome and Gene Ontology. Further a ready-to-use implementation of MitoCarta3.0
pathways is included.
The package facilitates implementation of workflows requiring miRNA
predictions, it allows to integrate ranked miRNA
target predictions from multiple sources available online and aggregate them with various methods which improves quality of predictions above any of the single sources. Currently predictions are available for Homo sapiens, Mus musculus and Rattus norvegicus (the last one through homology translation).
Support harvesting of diverse bioinformatic ontologies, making particular use of the ontologyIndex
package on CRAN. We provide snapshots of key ontologies for terms about cells, cell lines, chemical compounds, and anatomy, to help analyze genome-scale experiments, particularly cell x compound screens. Another purpose is to strengthen development of compelling use cases for richer interfaces to emerging ontologies.
PhIPData
defines an S4 class for phage-immunoprecipitation sequencing (PhIP-seq
) experiments. Buliding upon the RangedSummarizedExperiment
class, PhIPData
enables users to coordinate metadata with experimental data in analyses. Additionally, PhIPData
provides specialized methods to subset and identify beads-only samples, subset objects using virus aliases, and use existing peptide libraries to populate object parameters.
Bayes estimation of probit choice models, both in the cross-sectional and panel setting. The package can analyze binary, multivariate, ordered, and ranked choices, as well as heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Markov chain Monte Carlo m ethods, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating heuristic. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method see Oelschlaeger and Bauer (2021) <https://trid.trb.org/view/1759753>.
Has various functions designed to implement the Hermite-Gaussian Radial Velocity (HGRV) estimation approach of Holzer et al. (2020) <arXiv:2005.14083>
, which is a particular application of the radial velocity method for detecting exoplanets. The overall approach consists of four sequential steps, each of which has a function in this package: (1) estimate the template spectrum with the function estimate_template()
, (2) find absorption features in the estimated template with the function findabsorptionfeatures()
, (3) fit Gaussians to the absorption features with the function Gaussfit()
, (4) apply the HGRV with simple linear regression by calling the function hgrv()
. This package is meant to be open source. But please cite the paper Holzer et al. (2020) <arXiv:2005.14083>
when publishing results that use this package.
This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.
This package provides functions for reading *.PGN files with more than one game, including large files without copying it into RAM (using ff package or RSQLite package). Handle chess data and chess aggregated data, count figure moves statistics, create player profile, plot winning chances, browse openings. Set of functions of R API to communicate with UCI-protocol based chess engines.
Bayesian Network Structure Learning from Data with Missing Values. The package implements the Silander-Myllymaki complete search, the Max-Min Parents-and-Children, the Hill-Climbing, the Max-Min Hill-climbing heuristic searches, and the Structural Expectation-Maximization algorithm. Available scoring functions are BDeu, AIC, BIC. The package also implements methods for generating and using bootstrap samples, imputed data, inference.
This package provides statistical tools for Bayesian estimation of mixture distributions, mainly a mixture of Gamma, Normal, and t-distributions. The package is implemented based on the Bayesian literature for the finite mixture of distributions, including Mohammadi and et al. (2013) <doi:10.1007/s00180-012-0323-3> and Mohammadi and Salehi-Rad (2012) <doi:10.1080/03610918.2011.588358>.
Many correlation coefficient related functions are offered, such as correlations, partial correlations and hypothesis testing using asymptotic tests and computer intensive methods (bootstrap and permutation). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press and Owen A. B. (2001). "Empirical likelihood". Chapman and Hall/CRC Press. ISBN: 9781584880714.