With this package, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes simultaneous p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. 2 sample comparisons can be performed with the same methods described above. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers. See Konietschke et al. (2015) <doi:10.18637/jss.v064.i09> for details.
Contemporary software commonly used to design stated preference experiments are expensive and the code is closed source. This is a free software package with an easy to use interface to make flexible stated preference experimental designs using state-of-the-art methods. For an overview of stated choice experimental design theory, see e.g., Rose, J. M. & Bliemer, M. C. J. (2014) in Hess S. & Daly. A. <doi:10.4337/9781781003152>. The package website can be accessed at <https://spdesign.edsandorf.me>. We acknowledge funding from the European Unionâ s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant INSPiRE (Grant agreement ID: 793163).
MetaPhOR was developed to enable users to assess metabolic dysregulation using transcriptomic-level data (RNA-sequencing and Microarray data) and produce publication-quality figures. A list of differentially expressed genes (DEGs), which includes fold change and p value, from DESeq2 or limma, can be used as input, with sample size for MetaPhOR, and will produce a data frame of scores for each KEGG pathway. These scores represent the magnitude and direction of transcriptional change within the pathway, along with estimated p-values.MetaPhOR then uses these scores to visualize metabolic profiles within and between samples through a variety of mechanisms, including: bubble plots, heatmaps, and pathway models.
This package provides a common misconception is that the Hochberg procedure comes up with adequate overall type I error control when test statistics are positively correlated. However, unless the test statistics follow some standard distributions, the Hochberg procedure requires a more stringent positive dependence assumption, beyond mere positive correlation, to ensure valid overall type I error control. To fill this gap, we formulate statistical tests grounded in rank correlation coefficients to validate fulfillment of the positive dependence through stochastic ordering (PDS) condition. See Gou, J., Wu, K. and Chen, O. Y. (2024). Rank correlation coefficient based tests on positive dependence through stochastic ordering with application in cancer studies, Technical Report.
Enables the automation of actions across the pipeline, including initial steps of transforming binocular data and gap repair to event-based processing such as fixations, saccades, and entry/duration in Areas of Interest (AOIs). It also offers visualisation of eye movement and AOI entries. These tools take relatively raw (trial, time, x, and y form) data and can be used to return fixations, saccades, and AOI entries and time spent in AOIs. As the tools rely on this basic data format, the functions can work with data from any eye tracking device. Implements fixation and saccade detection using methods proposed by Salvucci and Goldberg (2000) <doi:10.1145/355017.355028>.
An English language syllable counter, plus readability score measure-er. For readability, we support Flesch Reading Ease and Flesch-Kincaid Grade Level ('Kincaid et al'. 1975) <https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1055&context=istlibrary>, Automated Readability Index ('Senter and Smith 1967) <https://apps.dtic.mil/sti/citations/AD0667273>, Simple Measure of Gobbledygook (McLaughlin 1969), and Coleman-Liau (Coleman and Liau 1975) <doi:10.1037/h0076540>. The package has been carefully optimized and should be very efficient, both in terms of run time performance and memory consumption. The main methods are vectorized by document, and scores for multiple documents are computed in parallel via OpenMP'.
This package provides interactive plotting for mathematical models of infectious disease spread. Users can choose from a variety of common built-in ordinary differential equation (ODE) models (such as the SIR, SIRS, and SIS models), or create their own. This latter flexibility allows shinySIR to be applied to simple ODEs from any discipline. The package is a useful teaching tool as students can visualize how changing different parameters can impact model dynamics, with minimal knowledge of coding in R. The built-in models are inspired by those featured in Keeling and Rohani (2008) <doi:10.2307/j.ctvcm4gk0> and Bjornstad (2018) <doi:10.1007/978-3-319-97487-3>.
The main objective of cooperative Transferable-Utility games (TU-games) is to allocate a good among the agents involved. The package implements major solution concepts including the Shapley value, Banzhaf value, and egalitarian rules, alongside their extensions for structured games: the Owen value and Banzhaf-Owen value for games with a priori unions, and the Myerson value for communication games on networks. To address the inherent exponential computational complexity of exact evaluation, the package offers both exact algorithms and linear approximation methods based on sampling, enabling the analysis of large-scale games. Additionally, it supports core set-based solutions, allowing computation of the vertices and the centroid of the core.
Implementation of LT-FH++, an extension of the liability threshold family history (LT-FH) model. LT-FH++ uses a Gibbs sampler for sampling from the truncated multivariate normal distribution and allows for flexible family structures. LT-FH++ was first described in Pedersen, Emil M., et al. (2022) <doi:10.1016/j.ajhg.2022.01.009> as an extension to LT-FH with more flexible family structures, and again as the age-dependent liability threshold (ADuLT) model Pedersen, Emil M., et al. (2023) <https://www.nature.com/articles/s41467-023-41210-z> as an alternative to traditional time-to-event genome-wide association studies, where family history was not considered.
Simulate complex traits given a SNP genotype matrix and model parameters (the desired heritability, number of causal loci, and either the true ancestral allele frequencies used to generate the genotypes or the mean kinship for a real dataset). Emphasis on avoiding common biases due to the use of estimated allele frequencies. The code selects random loci to be causal, constructs coefficients for these loci and random independent non-genetic effects, and can optionally generate random group effects. Traits can follow three models: random coefficients, fixed effect sizes, and infinitesimal (multivariate normal). GWAS method benchmarking functions are also provided. Described in Yao and Ochoa (2022) <doi:10.1101/2022.03.25.485885>.
Converts the dates to different SAS date formats. In SAS dates are a special case of numeric values. Each day is assigned a specific numeric value, starting from January 1, 1960. This date is assigned the date value 0, and the next date has a date value of 1 and so on. The previous days to this date are represented by -1 , -2 and so on. With this approach, SAS can represent any date in the future or any date in the past. There are many date formats used in SAS to represent date-time. Here, we try to develop functions which will convert the date to different SAS date formats.
Computes Bayesian wavelet shrinkage credible intervals for nonparametric regression. The method uses cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any data set. Johnson transformations then yield the credible intervals themselves. Barber, S., Nason, G.P. and Silverman, B.W. (2002) <doi:10.1111/1467-9868.00332>.
This package provides an R scripting interface to the open-source SAGA-GIS (System for Automated Geoscientific Analyses Geographical Information System) software. Rsagacmd dynamically generates R functions for every SAGA-GIS geoprocessing tool based on the user's currently installed SAGA-GIS version. These functions are contained within an S3 object and are accessed as a named list of libraries and tools. This structure facilitates an easier scripting experience by organizing the large number of SAGA-GIS geoprocessing tools (>700) by their respective library. Interactive scripting can fully take advantage of code autocompletion tools (e.g. in RStudio'), allowing for each tools syntax to be quickly recognized. Furthermore, the most common types of spatial data (via the terra', sp', and sf packages) along with non-spatial data are automatically passed from R to the SAGA-GIS command line tool for geoprocessing operations, and the results are loaded as the appropriate R object. Outputs from individual SAGA-GIS tools can also be chained using pipes from the magrittr and dplyr packages to combine complex geoprocessing operations together in a single statement. SAGA-GIS is available under a GPLv2 / LGPLv2 licence from <https://sourceforge.net/projects/saga-gis/> including Windows x86/x64 and macOS binaries. SAGA-GIS is also included in Debian/Ubuntu default software repositories. Rsagacmd has currently been tested on SAGA-GIS versions from 2.3.1 to 9.5.1 on Windows, Linux and macOS.
GARFIELD is a non-parametric functional enrichment analysis approach described in the paper GARFIELD: GWAS analysis of regulatory or functional information enrichment with LD correction. Briefly, it is a method that leverages GWAS findings with regulatory or functional annotations (primarily from ENCODE and Roadmap epigenomics data) to find features relevant to a phenotype of interest. It performs greedy pruning of GWAS SNPs (LD r2 > 0.1) and then annotates them based on functional information overlap. Next, it quantifies Fold Enrichment (FE) at various GWAS significance cutoffs and assesses them by permutation testing, while matching for minor allele frequency, distance to nearest transcription start site and number of LD proxies (r2 > 0.8).
ProteoMM is a statistical method to perform model-based peptide-level differential expression analysis of single or multiple datasets. For multiple datasets ProteoMM produces a single fold change and p-value for each protein across multiple datasets. ProteoMM provides functionality for normalization, missing value imputation and differential expression. Model-based peptide-level imputation and differential expression analysis component of package follows the analysis described in “A statistical framework for protein quantitation in bottom-up MS based proteomics" (Karpievitch et al. Bioinformatics 2009). EigenMS normalisation is implemented as described in "Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition." (Karpievitch et al. Bioinformatics 2009).
When taking online surveys, participants sometimes respond to items without regard to their content. These types of responses, referred to as careless or insufficient effort responding, constitute significant problems for data quality, leading to distortions in data analysis and hypothesis testing, such as spurious correlations. The R package careless provides solutions designed to detect such careless / insufficient effort responses by allowing easy calculation of indices proposed in the literature. It currently supports the calculation of longstring, even-odd consistency, psychometric synonyms/antonyms, Mahalanobis distance, and intra-individual response variability (also termed inter-item standard deviation). For a review of these methods, see Curran (2016) <doi:10.1016/j.jesp.2015.07.006>.
This package provides data for Kaya identity variables (population, gross domestic product, primary energy consumption, and energy-related CO2 emissions) for the world and for individual nations, and utility functions for looking up data, plotting trends of Kaya variables, and plotting the fuel mix for a given country or region. The Kaya identity (Yoichi Kaya and Keiichi Yokobori, "Environment, Energy, and Economy: Strategies for Sustainability" (United Nations University Press, 1998) and <https://en.wikipedia.org/wiki/Kaya_identity>) expresses a nation's or region's greenhouse gas emissions in terms of its population, per-capita Gross Domestic Product, the energy intensity of its economy, and the carbon-intensity of its energy supply.
This package contains functions performing Bayesian inference for meta-analytic and network meta-analytic models through Markov chain Monte Carlo algorithm. Currently, the package implements Hui Yao, Sungduk Kim, Ming-Hui Chen, Joseph G. Ibrahim, Arvind K. Shah, and Jianxin Lin (2015) <doi:10.1080/01621459.2015.1006065> and Hao Li, Daeyoung Lim, Ming-Hui Chen, Joseph G. Ibrahim, Sungduk Kim, Arvind K. Shah, Jianxin Lin (2021) <doi:10.1002/sim.8983>. For maximal computational efficiency, the Markov chain Monte Carlo samplers for each model, written in C++, are fine-tuned. This software has been developed under the auspices of the National Institutes of Health and Merck & Co., Inc., Kenilworth, NJ, USA.
Designed for performing impact analysis of opinions in a digital text document (DTD). The package allows a user to assess the extent to which a theme or subject within a document impacts the overall opinion expressed in the document. The package can be applied to a wide range of opinion-based DTD, including commentaries on social media platforms (such as Facebook', Twitter and Youtube'), online products reviews, and so on. The utility of opitools was originally demonstrated in Adepeju and Jimoh (2021) <doi:10.31235/osf.io/c32qh> in the assessment of COVID-19 impacts on neighbourhood policing using Twitter data. Further examples can be found in the vignette of the package.
This package provides high-level API and a wide range of options to create stunning, publication-quality plots effortlessly. It is built upon ggplot2 and other plotting packages, and is designed to be easy to use and to work seamlessly with ggplot2 objects. It is particularly useful for creating complex plots with multiple layers, facets, and annotations. It also provides a set of functions to create plots for specific types of data, such as Venn diagrams, alluvial diagrams, and phylogenetic trees. The package is designed to be flexible and customizable, and to work well with the ggplot2 ecosystem. The API can be found at <https://pwwang.github.io/plotthis/reference/index.html>.
Implementation of the SIC epsilon-telescope method, either using single or distributional (multiparameter) regression. Includes classical regression with normally distributed errors and robust regression, where the errors are from the Laplace distribution. The "smooth generalized normal distribution" is used, where the estimation of an additional shape parameter allows the user to move smoothly between both types of regression. See O'Neill and Burke (2022) "Robust Distributional Regression with Automatic Variable Selection" for more details. <doi:10.48550/arXiv.2212.07317>. This package also contains the data analyses from O'Neill and Burke (2023). "Variable selection using a smooth information criterion for distributional regression models". <doi:10.1007/s11222-023-10204-8>.
An implementation of tidy speaker vowel normalization. This includes generic functions for defining new normalization methods for points, formant tracks, and Discrete Cosine Transform coefficients, as well as convenience functions implementing established normalization methods. References for the implemented methods are: Johnson, Keith (2020) <doi:10.5334/labphon.196> Lobanov, Boris (1971) <doi:10.1121/1.1912396> Nearey, Terrance M. (1978) <https://sites.ualberta.ca/~tnearey/Nearey1978_compressed.pdf> Syrdal, Ann K., and Gopal, H. S. (1986) <doi:10.1121/1.393381> Watt, Dominic, and Fabricius, Anne (2002) <https://www.latl.leeds.ac.uk/article/evaluation-of-a-technique-for-improving-the-mapping-of-multiple-speakers-vowel-spaces-in-the-f1-f2-plane/>.
The functions proposed in this package allows to evaluate the process of measurement of the chemical components of water numerically or graphically. TSSS(), ICHS and datacheck() functions are useful to control the quality of measurements of chemical components of a sample of water. If one or more measurements include an error, the generated graph will indicate it with a position of the point that represents the sample outside the confidence interval. The function CI() allows to evaluate the possibility of contamination of a water sample after being obtained. Validation() is a function that allows to calculate the quality parameters of a technique for the measurement of a chemical component.
Designed to support the visualization, numerical computation, qualitative analysis, model-data fusion, and stochastic simulation for autonomous systems of differential equations. Euler and Runge-Kutta methods are implemented, along with tools to visualize the two-dimensional phaseplane. Likelihood surfaces and a simple Markov Chain Monte Carlo parameter estimator can be used for model-data fusion of differential equations and empirical models. The Euler-Maruyama method is provided for simulation of stochastic differential equations. The package was originally written for internal use to support teaching by Zobitz, and refined to support the text "Exploring modeling with data and differential equations using R" by John Zobitz (2021) <https://jmzobitz.github.io/ModelingWithR/index.html>.