Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation of DIFferential COexpressed NETworks using diverse and user metrics. This package is basically used for three functions related to the estimation of differential coexpression. First, to estimate differential coexpression where the coexpression is estimated, by default, by Spearman correlation. For this, a metric to compare two correlation distributions is needed. The package includes 6 metrics. Some of them needs a threshold. A new metric can also be specified as a user function with specific parameters (see difconet.run). The significance is be estimated by permutations. Second, to generate datasets with controlled differential correlation data. This is done by either adding noise, or adding specific correlation structure. Third, to show the results of differential correlation analyses. Please see <http://bioinformatica.mty.itesm.mx/difconet> for further information.
Various diffusion models to forecast new product growth. Currently the package contains Bass, Gompertz, Gamma/Shifted Gompertz and Weibull curves. See Meade and Islam (2006) <doi:10.1016/j.ijforecast.2006.01.005>.
This package performs an exploratory data analysis through a shiny interface. It includes basic methods such as the mean, median, mode, normality test, among others. It also includes clustering techniques such as Principal Components Analysis, Hierarchical Clustering and the K-Means Method.
Several quality measurements for investigating the performance of dimensionality reduction methods are provided here. In addition a new quality measurement called Gabriel classification error is made accessible, which was published in Thrun, M. C., Märte, J., & Stier, Q: "Analyzing Quality Measurements for Dimensionality Reduction" (2023), Machine Learning and Knowledge Extraction (MAKE), <DOI:10.3390/make5030056>.
Summarizing data frames by calculating various statistical measures, including measures of central tendency, dispersion, skewness(), kurtosis(), and normality tests. The package leverages the moments package for calculating statistical moments and related measures, the dplyr package for data manipulation, and the nortest package for normality testing. DataSum includes functions such as getmode() for finding the mode(s) of a data vector, shapiro_normality_test() for performing the Shapiro-Wilk test (Shapiro & Wilk 1965 <doi:10.1093/biomet/52.3-4.591>) (or the Anderson-Darling test when the data length is outside the valid range for the Shapiro-Wilk test) (Stephens 1974 <doi:10.1080/01621459.1974.10480196>), Datum() for generating a comprehensive summary of a data vector with various statistics (including data type, sample size, mean, mode, median, variance, standard deviation, maximum, minimum, range, skewness(), kurtosis(), and normality test result) (Joanes & Gill 1998 <doi:10.1111/1467-9884.00122>), and DataSumm() for applying the Datum() function to each column of a data frame. Emphasizing the importance of normality testing, the package provides robust tools to validate whether data follows a normal distribution, a fundamental assumption in many statistical analyses and models.
This package provides a system for extracting news from Chilean media, specifically through Web Scapping from Chilean media. The package allows for news searches using search phrases and date filters, and returns the results in a structured format, ready for analysis. Additionally, it includes functions to clean the extracted data, visualize it, and store it in databases. All of this can be done automatically, facilitating the collection and analysis of relevant information from Chilean media.
Move elements between containers in Shiny without explicitly using JavaScript'. It can be used to build custom inputs or to change the positions of user interface elements like plots or tables.
This package implements a Bayesian algorithm for overcoming weak separation in Bayesian latent class analysis. Reference: Li et al. (2023) <arXiv:2306.04700>.
Quality control and formatting tools developed for the Copernicus Data Rescue Service. The package includes functions to handle the Station Exchange Format (SEF), various statistical tests for climate data at daily and sub-daily resolution, as well as functions to plot the data. For more information and documentation see <https://datarescue.climate.copernicus.eu/st_data-quality-control>.
Designed for genomic and proteomic data analysis, enabling unbiased PubMed searching, protein interaction network visualization, and comprehensive data summarization. This package aims to help users identify novel targets within their data sets based on protein network interactions and publication precedence of target's association with research context based on literature precedence. Methods in this package are described in detail in: Douglas (Year) <to-be-added DOI or link to the preprint>. Key functionalities of this package also leverage methodologies from previous works, such as: - Szklarczyk et al. (2023) <doi:10.1093/nar/gkac1000> - Winter (2017) <doi:10.32614/RJ-2017-066>.
Model selection algorithms for regression and classification, where the predictors can be continuous or categorical and the number of regressors may exceed the number of observations. The selected model consists of a subset of numerical regressors and partitions of levels of factors. Szymon Nowakowski, Piotr Pokarowski, Wojciech Rejchel and Agnieszka SoÅ tys, 2023. Improving Group Lasso for High-Dimensional Categorical Data. In: Computational Science â ICCS 2023. Lecture Notes in Computer Science, vol 14074, p. 455-470. Springer, Cham. <doi:10.1007/978-3-031-36021-3_47>. Aleksandra Maj-KaÅ ska, Piotr Pokarowski and Agnieszka Prochenka, 2015. Delete or merge regressors for linear model selection. Electronic Journal of Statistics 9(2): 1749-1778. <doi:10.1214/15-EJS1050>. Piotr Pokarowski and Jan Mielniczuk, 2015. Combined l1 and greedy l0 penalized least squares for linear model selection. Journal of Machine Learning Research 16(29): 961-992. <https://www.jmlr.org/papers/volume16/pokarowski15a/pokarowski15a.pdf>. Piotr Pokarowski, Wojciech Rejchel, Agnieszka SoÅ tys, MichaÅ Frej and Jan Mielniczuk, 2022. Improving Lasso for model selection and prediction. Scandinavian Journal of Statistics, 49(2): 831â 863. <doi:10.1111/sjos.12546>.
Dynamic treatment regime estimation and inference via G-estimation, dynamic weighted ordinary least squares (dWOLS) and Q-learning. Inference via bootstrap and recursive sandwich estimation. Estimation and inference for survival outcomes via Dynamic Weighted Survival Modeling (DWSurv). Extension to continuous treatment variables. Wallace et al. (2017) <DOI:10.18637/jss.v080.i02>; Simoneau et al. (2020) <DOI:10.1080/00949655.2020.1793341>.
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann (2021) "Regularizing Double Machine Learning in Partially Linear Endogenous Models" <arXiv:2101.12525> and Emmenegger and Buehlmann (2021) <arXiv:2108.13657> "Double Machine Learning for Partially Linear Mixed-Effects Models with Repeated Measurements". First part: our goal is to perform inference for the linear parameter in partially linear models with confounding variables. The standard DML estimator of the linear parameter has a two-stage least squares interpretation, which can lead to a large variance and overwide confidence intervals. We apply regularization to reduce the variance of the estimator, which produces narrower confidence intervals that are approximately valid. Nuisance terms can be flexibly estimated with machine learning algorithms. Second part: our goal is to estimate and perform inference for the linear coefficient in a partially linear mixed-effects model with DML. Machine learning algorithms allows us to incorporate more complex interaction structures and high-dimensional variables.
Calculates key indicators such as fertility rates (Total Fertility Rate (TFR), General Fertility Rate (GFR), and Age Specific Fertility Rate (ASFR)) using Demographic and Health Survey (DHS) women/individual data, childhood mortality probabilities and rates such as Neonatal Mortality Rate (NNMR), Post-neonatal Mortality Rate (PNNMR), Infant Mortality Rate (IMR), Child Mortality Rate (CMR), and Under-five Mortality Rate (U5MR), and adult mortality indicators such as the Age Specific Mortality Rate (ASMR), Age Adjusted Mortality Rate (AAMR), Age Specific Maternal Mortality Rate (ASMMR), Age Adjusted Maternal Mortality Rate (AAMMR), Age Specific Pregnancy Related Mortality Rate (ASPRMR), Age Adjusted Pregnancy Related Mortality Rate (AAPRMR), Maternal Mortality Ratio (MMR) and Pregnancy Related Mortality Ratio (PRMR). In addition to the indicators, the DHS.rates package estimates sampling errors indicators such as Standard Error (SE), Design Effect (DEFT), Relative Standard Error (RSE) and Confidence Interval (CI). The package is developed according to the DHS methodology of calculating the fertility indicators and the childhood mortality rates outlined in the "Guide to DHS Statistics" (Croft, Trevor N., Aileen M. J. Marshall, Courtney K. Allen, et al. 2018, <https://dhsprogram.com/Data/Guide-to-DHS-Statistics/index.cfm>) and the DHS methodology of estimating the sampling errors indicators outlined in the "DHS Sampling and Household Listing Manual" (ICF International 2012, <https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_Manual_Sept2012_DHSM4.pdf>).
Improves the concept of multivariate range boxes, which is highly susceptible for outliers and does not consider the distribution of the data. The package uses dynamic range boxes to overcome these problems.
This package performs the drifting Markov models (DMM) which are non-homogeneous Markov models designed for modeling the heterogeneities of sequences in a more flexible way than homogeneous Markov chains or even hidden Markov models. In this context, we developed an R package dedicated to the estimation, simulation and the exact computation of associated reliability of drifting Markov models. The implemented methods are described in Vergne, N. (2008), <doi:10.2202/1544-6115.1326> and Barbu, V.S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8> .
This package provides a sparse Partial Least Squares implementation which uses soft-threshold estimation of the covariance matrices and therein introduces sparsity. Number of components and regularization coefficients are automatically set.
This package provides functions for fitting Cox proportional hazards models for grouped time-to-event data, where the shared group-specific frailties have a discrete nonparametric distribution. The methods proposed in the package is described by Gasperoni, F., Ieva, F., Paganoni, A. M., Jackson, C. H., Sharples, L. (2018) <doi:10.1093/biostatistics/kxy071>. There are also functions for simulating from these models, with a nonparametric or a parametric baseline hazard function.
Joint DNA-based disaster victim identification (DVI), as described in Vigeland and Egeland (2021) <doi:10.21203/rs.3.rs-296414/v1>. Identification is performed by optimising the joint likelihood of all victim samples and reference individuals. Individual identification probabilities, conditional on all available information, are derived from the joint solution in the form of posterior pairing probabilities. dvir is part of the pedsuite collection of packages for pedigree analysis.
This package provides a suite of tools to help modelers and decision-makers effectively interpret and communicate decision risk when evaluating multiple policy options. It uses model outputs from uncertainty analysis for baseline scenarios and policy alternatives to generate visual representations of uncertainty and quantitative measures for assessing associated risks. For more details see Wiggins and colleagues (2025) <doi:10.1371/journal.pone.0332522> and <https://dut.ihe.ca/>.
Base DataSHIELD functions for the server side. DataSHIELD is a software package which allows you to do non-disclosive federated analysis on sensitive data. DataSHIELD analytic functions have been designed to only share non disclosive summary statistics, with built in automated output checking based on statistical disclosure control. With data sites setting the threshold values for the automated output checks. For more details, see citation("dsBase")'.
Various methods for the identification of trend and seasonal components in time series (TS) are provided. Among them is a data-driven locally weighted regression approach with automatically selected bandwidth for equidistant short-memory time series. The approach is a combination / extension of the algorithms by Feng (2013) <doi:10.1080/02664763.2012.740626> and Feng, Y., Gries, T., and Fritz, M. (2020) <doi:10.1080/10485252.2020.1759598> and a brief description of this new method is provided in the package documentation. Furthermore, the package allows its users to apply the base model of the Berlin procedure, version 4.1, as described in Speth (2004) <https://www.destatis.de/DE/Methoden/Saisonbereinigung/BV41-methodenbericht-Heft3_2004.pdf?__blob=publicationFile>. Permission to include this procedure was kindly provided by the Federal Statistical Office of Germany.
This package implements a Bayesian Optimal Phase II design (DTE-BOP2) for trials with delayed treatment effects, particularly relevant to immunotherapy studies where treatment benefits may emerge after a delay. The method builds upon the BOP2 framework and incorporates uncertainty in the delay timepoint through a truncated gamma prior, informed by expert knowledge or default settings. Supports two-arm trial designs with functionality for sample size determination, interim and final analyses, and comprehensive simulation under various delay and design scenarios. Ensures rigorous type I and II error control while improving trial efficiency and power when the delay effect is present. A manuscript describing the methodology is under development and will be formally referenced upon publication.
DMC model simulation detailed in Ulrich, R., Schroeter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148-174. Ulrich et al. (2015) <doi:10.1016/j.cogpsych.2015.02.005>. Decision processes within choice reaction-time (CRT) tasks are often modelled using evidence accumulation models (EAMs), a variation of which is the Diffusion Decision Model (DDM, for a review, see Ratcliff & McKoon, 2008). Ulrich et al. (2015) introduced a Diffusion Model for Conflict tasks (DMC). The DMC model combines common features from within standard diffusion models with the addition of superimposed controlled and automatic activation. The DMC model is used to explain distributional reaction time (and error rate) patterns in common behavioural conflict-like tasks (e.g., Flanker task, Simon task). This R-package implements the DMC model and provides functionality to fit the model to observed data. Further details are provided in the following paper: Mackenzie, I.G., & Dudschig, C. (2021). DMCfun: An R package for fitting Diffusion Model of Conflict (DMC) to reaction time and error rate data. Methods in Psychology, 100074. <doi:10.1016/j.metip.2021.100074>.