Identifying labeled compounds in a 13C-tracer experiment in non-targeted fashion is a cumbersome process. This package facilitates such type of analyses by providing high level quality control plots, deconvoluting and evaluating spectra and performing a multitude of tests in an automatic fashion. The main idea is to use changing intensity ratios of ion pairs from peak list generated with xcms as candidates and evaluate those against base peak chromatograms and spectra information within the raw measurement data automatically. The functionality is described in Hoffmann et al. (2018) <doi:10.1021/acs.analchem.8b00356>.
Dealing with neutrosophic data of the form N=D+I(where N is a Neutrosophic number ,D is the determinant part of the number and I is the indeterminacy part) using the neutrosophic two way anova test keeps the type I error low. This algorithm calculates the fisher statistics when we have a neutrosophic data, also tests two hypothesizes, first is to test differences between treatments, and second is to test differences between sectors. For more information see Miari, Mahmoud; Anan, Mohamad Taher; Zeina, Mohamed Bisher(2022) <https://www.americaspg.com/articleinfo/21/show/1058>.
Normative data are often used to estimate the relative position of a raw test score in the population. This package allows for deriving regression-based normative data. It includes functions that enable the fitting of regression models for the mean and residual (or variance) structures, test the model assumptions, derive the normative data in the form of normative tables or automatic scoring sheets, and estimate confidence intervals for the norms. This package accompanies the book Van der Elst, W. (2024). Regression-based normative data for psychological assessment. A hands-on approach using R. Springer Nature.
The comprehensive knowledge of epigenetic modifications in plants, encompassing histone modifications in regulating gene expression, is not completely ingrained. It is noteworthy that histone deacetylation and histone H3 lysine 27 trimethylation (H3K27me3) play a role in repressing transcription in eukaryotes. In contrast, histone acetylation (H3K9ac) and H3K4me3 have been inevitably linked to the stimulation of gene expression, which significantly influences plant development and plays a role in plant responses to biotic and abiotic stresses. To our knowledge this the first multiclass classifier for predicting histone modification in plants. <doi:10.1186/s12864-019-5489-4>.
The goal of PlotFTIR
is to easily and quickly kick-start the production of journal-quality Fourier Transform Infra-Red (FTIR) spectral plots in R using ggplot2'. The produced plots can be published directly or further modified by ggplot2 functions. L'objectif de PlotFTIR
est de démarrer facilement et rapidement la production des tracés spectraux de spectroscopie infrarouge à transformée de Fourier (IRTF) de qualité journal dans R à l'aide de ggplot2'. Les tracés produits peuvent être publiés directement ou modifiés davantage par les fonctions ggplot2'.
Datetimes and timestamps are invariably an imprecise notation, with any partial representation implying some amount of uncertainty. To handle this, parttime provides classes for embedding partial missingness as a central part of its datetime classes. This central feature allows for more ergonomic use of datetimes for challenging datetime computation, including calculations of overlapping date ranges, imputations, and more thoughtful handling of ambiguity that arises from uncertain time zones. This package was developed first and foremost with pharmaceutical applications in mind, but aims to be agnostic to application to accommodate general use cases just as conveniently.
Researchers working with Qualitative Comparative Analysis (QCA) can use the package to estimate power of a sufficient term using permutation tests. A term can be anything: A condition, conjunction or disjunction of any combination of these. The package further allows users to plot the estimation results and to estimate the number of cases required to achieve a certain level of power, given a prespecified null and alternative hypothesis. Reference for the article introducing power estimation for QCA is: Rohlfing, Ingo (2018) <doi:10.1017/pan.2017.30> (ungated version: <doi:10.17605/OSF.IO/PC4DF>).
It allows to rapidly compute, bootstrap and plot up to fourth-order Sobol'-based sensitivity indices using several state-of-the-art first and total-order estimators. Sobol indices can be computed either for models that yield a scalar as a model output or for systems of differential equations. The package also provides a suit of benchmark tests functions and several options to obtain publication-ready figures of the model output uncertainty and sensitivity-related analysis. An overview of the package can be found in Puy et al. (2022) <doi:10.18637/jss.v102.i05>.
This package provides a user-friendly R shiny app for performing various statistical tests on datasets. It allows users to upload data in numerous formats and perform statistical analyses. The app dynamically adapts its options based on the selected columns and supports both single and multiple column comparisons. The app's user interface is designed to streamline the process of selecting datasets, columns, and test options, making it easy for users to explore and interpret their data. The underlying functions for statistical tests are well-organized and can be used independently within other R scripts.
SBGNview is a tool set for pathway based data visalization, integration and analysis. SBGNview is similar and complementary to the widely used Pathview, with the following key features: 1. Pathway definition by the widely adopted Systems Biology Graphical Notation (SBGN); 2. Supports multiple major pathway databases beyond KEGG (Reactome, MetaCyc
, SMPDB, PANTHER, METACROP) and user defined pathways; 3. Covers 5,200 reference pathways and over 3,000 species by default; 4. Extensive graphics controls, including glyph and edge attributes, graph layout and sub-pathway highlight; 5. SBGN pathway data manipulation, processing, extraction and analysis.
Using site polymorphism is one of the ways to cluster DNA/protein sequences but it is possible for the sequences with the same polymorphism on a single site to be genetically distant. This package is aimed at clustering sequences using site polymorphism and their corresponding phylogenetic trees. By considering their location on the tree, only the structurally adjacent sequences will be clustered. However, the adjacent sequences may not necessarily have the same polymorphism. So a branch-and-bound like algorithm is used to minimize the entropy representing the purity of site polymorphism of each cluster.
This package implements two methods for performing a constrained principal component analysis (PCA), where non-negativity and/or sparsity constraints are enforced on the principal axes (PAs). The function nsprcomp
computes one principal component (PC) after the other. Each PA is optimized such that the corresponding PC has maximum additional variance not explained by the previous components. In contrast, the function nscumcomp
jointly computes all PCs such that the cumulative variance is maximal. Both functions have the same interface as the prcomp
function from the stats
package (plus some extra parameters).
Color and visualize wildlife distributions in space-time using raster data. In addition to enabling display of sequential change in distributions through the use of small multiples, colorist provides functions for extracting several features of interest from a sequence of distributions and for visualizing those features using HCL (hue-chroma-luminance) color palettes. Resulting maps allow for "fair" visual comparison of intensity values (e.g., occurrence, abundance, or density) across space and time and can be used to address questions about where, when, and how consistently a species, group, or individual is likely to be found.
This package implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.
Genomic alterations including single nucleotide substitution, copy number alteration, etc. are the major force for cancer initialization and development. Due to the specificity of molecular lesions caused by genomic alterations, we can generate characteristic alteration spectra, called signature (Wang, Shixiang, et al. (2021) <DOI:10.1371/journal.pgen.1009557> & Alexandrov, Ludmil B., et al. (2020) <DOI:10.1038/s41586-020-1943-3> & Steele Christopher D., et al. (2022) <DOI:10.1038/s41586-022-04738-6>). This package helps users to extract, analyze and visualize signatures from genomic alteration records, thus providing new insight into cancer study.
Stratigraphic ranges of fossil marine animal genera from Sepkoski's (2002) published compendium. No changes have been made to any taxonomic names. However, first and last appearance intervals have been updated to be consistent with stages of the International Geological Timescale. Functionality for generating a plot of Sepkoski's evolutionary fauna is also included. For specific details on the compendium see: Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, pp. 1â 560 (ISBN 0-87710-450-6). Access: <https://www.biodiversitylibrary.org/item/40634#page/5/mode/1up>.
This package implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>). Covariance tapering (Furrer et al. (2006) <doi:10.1198/106186006X132178>) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) <doi:10.1080/13658816.2022.2097684>). The package and its capabilities are described in (Dambon et al. (2021c) <doi:10.48550/arXiv.2106.02364>
).
Interactive tools for generating random samples. Users select an .xlsx, .csv, or delimited .txt file with population data and are walked through selecting the sample type (Simple Random Sample or Stratified), the number of backups desired, and a "stratify_on" value (if desired). The sample size is determined using a normal approximation to the hypergeometric distribution based on Nicholson (1956) <doi:10.1214/aoms/1177728270>. An .xlsx file is created with the sample and key metadata for reference. It is menu-driven and lets users pick an output directory. See vignettes for a detailed walk-through.
This package provides a statistical tool to inference the multi-level partial correlations based on multi-subject time series data, especially for brain functional connectivity. It combines both individual and population level inference by using the methods of Qiu and Zhou. (2021)<DOI: 10.1080/01621459.2021.1917417> and Genovese and Wasserman. (2006)<DOI: 10.1198/016214506000000339>. It realizes two reliable estimation methods of partial correlation coefficients, using scaled lasso and lasso. It can be used to estimate individual- or population-level partial correlations, identify nonzero ones, and find out unequal partial correlation coefficients between two populations.
This package provides a zero dependency package containing functions to declare labels and missing values, coupled with associated functions to create (weighted) tables of frequencies and various other summary measures. Some of the base functions have been rewritten to make use of the specific information about the missing values, most importantly to distinguish between empty NA and declared NA values. Some functions have similar functionality with the corresponding ones from packages "haven" and "labelled". The aim is to ensure as much compatibility as possible with these packages, while offering an alternative in the objects of class "declared".
This package provides methods for working with nominal dates, times, and durations. Base R has sophisticated facilities for handling time, but these can give unexpected results if, for example, timezone is not handled properly. This package provides a more casual approach to support cases which do not require rigorous treatment. It systematically deconstructs the concepts origin and timezone, and de-emphasizes the display of seconds. It also converts among nominal durations such as seconds, hours, days, and weeks. See ?datetime and ?duration for examples. Adapted from metrumrg <http://r-forge.r-project.org/R/?group_id=1215>.
Two Gray Level Co-occurrence Matrix ('GLCM') implementations are included: The first is a fast GLCM feature texture computation based on Python Numpy arrays ('Github Repository, <https://github.com/tzm030329/GLCM>). The second is a fast GLCM RcppArmadillo
implementation which is parallelized (using OpenMP
') with the option to return all GLCM features at once. For more information, see "Artifact-Free Thin Cloud Removal Using Gans" by Toizumi Takahiro, Zini Simone, Sagi Kazutoshi, Kaneko Eiji, Tsukada Masato, Schettini Raimondo (2019), IEEE International Conference on Image Processing (ICIP), pp. 3596-3600, <doi:10.1109/ICIP.2019.8803652>.
Aligns peak based on peak retention times and matches homologous peaks across samples. The underlying alignment procedure comprises three sequential steps. (1) Full alignment of samples by linear transformation of retention times to maximise similarity among homologous peaks (2) Partial alignment of peaks within a user-defined retention time window to cluster homologous peaks (3) Merging rows that are likely representing homologous substances (i.e. no sample shows peaks in both rows and the rows have similar retention time means). The algorithm is described in detail in Ottensmann et al., 2018 <doi:10.1371/journal.pone.0198311>.
Routines for two different test types, the Constant Conditional Correlation (CCC) test and the Vectorial Independence (VI) test are provided (Kurz and Spanhel (2022) <doi:10.1214/22-EJS2051>). The tests can be applied to check whether a conditional copula coincides with its partial copula. Functions to test whether a regular vine copula satisfies the so-called simplifying assumption or to test a single copula within a regular vine copula to be a (j-1)-th order partial copula are available. The CCC test comes with a decision tree approach to allow testing in high-dimensional settings.