This package provides a collection of simple simulation datasets designed for generating Nonlinear Dimension Reduction representations techniques such as t-distributed Stochastic Neighbor Embedding, and Uniform Manifold Approximation and Projection. These datasets serve as a valuable resource for understanding the reliability of Nonlinear Dimension Reduction representations in various contexts.
Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0). Please cite this paper: Schwarz J and Heider D, Bioinformatics 2019, 35(14):2458-2465.
Record and generate a gif of your R sessions plots. When creating a visualization, there is inevitably iteration and refinement that occurs. Automatically save the plots made to a specified directory, previewing them as they would be saved. Then combine all plots generated into a gif to show the plot refinement over time.
Fork of calendR
R package to generate ready to print calendars with ggplot2 (see <https://r-coder.com/calendar-plot-r/>) with additional features (backwards compatible). calendRio
provides a calendR()
function that serves as a drop-in replacement for the upstream version but allows for additional parameters unlocking extra functionality.
This package provides functions for computing the one-sided p-values of the Cochran-Armitage trend test statistic for the asymptotic and the exact conditional test. The computation of the p-value for the exact test is performed using an algorithm following an idea by Mehta, et al. (1992) <doi:10.2307/1390598>.
This package provides a framework for estimating causal effects of a continuous exposure using observational data, and implementing matching and weighting on the generalized propensity score. Wu, X., Mealli, F., Kioumourtzoglou, M.A., Dominici, F. and Braun, D., 2022. Matching on generalized propensity scores with continuous exposures. Journal of the American Statistical Association, pp.1-29.
This package performs simple correspondence analysis on a two-way contingency table, or multiple correspondence analysis (homogeneity analysis) on data with p categorical variables, and produces bootstrap-based elliptical confidence regions around the projected coordinates for the category points. Includes routines to plot the results in a variety of styles. Also reports the standard numerical output for correspondence analysis.
This package provides methods to deal with under sampling in ecological bipartite networks from Terry and Lewis (2020) Ecology <doi:10.1002/ecy.3047> Includes tools to fit a variety of statistical network models and sample coverage estimators to highlight most likely missing links. Also includes simple functions to resample from observed networks to generate confidence intervals for common ecological network metrics.
This package implements various estimators for average treatment effects - an inverse probability weighted (IPW) estimator, an augmented inverse probability weighted (AIPW) estimator, and a standard regression estimator - that make use of generalized additive models for the treatment assignment model and/or outcome model. See: Glynn, Adam N. and Kevin M. Quinn. 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator." Political Analysis. 18: 36-56.
To improve estimation accuracy and stability in statistical modeling, catalytic prior distributions are employed, integrating observed data with synthetic data generated from a simpler model's predictive distribution. This approach enhances model robustness, stability, and flexibility in complex data scenarios. The catalytic prior distributions are introduced by Huang et al. (2020, <doi:10.1073/pnas.1920913117>), Li and Huang (2023, <doi:10.48550/arXiv.2312.01411>
).
Calculates population attributable fraction causal effects. The causalPAF
package contains a suite of functions for causal analysis calculations of population attributable fractions (PAF) given a causal diagram which apply both: Pathway-specific population attributable fractions (PS-PAFs) Oâ Connell and Ferguson (2022) <doi:10.1093/ije/dyac079> and Sequential population attributable fractions Ferguson, Oâ Connell, and Oâ Donnell (2020) <doi:10.1186/s13690-020-00442-x>. Results are presentable in both table and plot format.
This package provides a new robust principal component analysis algorithm is implemented that relies upon the Cauchy Distribution. The algorithm is suitable for high dimensional data even if the sample size is less than the number of variables. The methodology is described in this paper: Fayomi A., Pantazis Y., Tsagris M. and Wood A.T.A. (2024). "Cauchy robust principal component analysis with applications to high-dimensional data sets". Statistics and Computing, 34: 26. <doi:10.1007/s11222-023-10328-x>.
Integrated, convenient, and uniform access to Canadian Census data and geography retrieved using the CensusMapper
API. This package produces analysis-ready tidy data frames and spatial data in multiple formats, as well as convenience functions for working with Census variables, variable hierarchies, and region selection. API keys are freely available with free registration at <https://censusmapper.ca/api>. Census data and boundary geometries are reproduced and distributed on an "as is" basis with the permission of Statistics Canada (Statistics Canada 2001; 2006; 2011; 2016; 2021).
This package provides methods to infer clonal tree configuration for a population of cells using single-cell RNA-seq data (scRNA-seq), and possibly other data modalities. Methods are also provided to assign cells to inferred clones and explore differences in gene expression between clones. These methods can flexibly integrate information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. A flexible beta-binomial error model that accounts for stochastic dropout events as well as systematic allelic imbalance is used.
Terrestrial maps with simplified topologies for Census Divisions, Agricultural Regions, Economic Regions, Federal Electoral Divisions and Provinces.
Identification of cardinal dates (begin, time of maximum, end of mass developments) in ecological time series using fitted Weibull functions.
The causalsens package provides functions to perform sensitivity analyses and to study how various assumptions about selection bias affects estimates of causal effects.
This package implements methods for querying data from CalPASS
using its API. CalPASS
Plus. MMAP API V1. <https://mmap.calpassplus.org/docs/index.html>.
Several causal effects are measured using least squares regressions and basis function approximations. Backward and forward selection methods based on different criteria are used to select the basis functions.
This package provides six variants of two-way correspondence analysis (ca): simple ca, singly ordered ca, doubly ordered ca, non symmetrical ca, singly ordered non symmetrical ca, and doubly ordered non symmetrical ca.
Procedures for making continuous cartogram. Procedures available are: flow based cartogram (Gastner & Newman (2004) <doi:10.1073/pnas.0400280101>), fast flow based cartogram (Gastner, Seguy & More (2018) <doi:10.1073/pnas.1712674115>), rubber band based cartogram (Dougenik et al. (1985) <doi:10.1111/j.0033-0124.1985.00075.x>).
This package implements the framework introduced in Di Francesco and Mellace (2025) <doi:10.48550/arXiv.2502.11691>
, shifting the focus to well-defined and interpretable estimands that quantify how treatment affects the probability distribution over outcome categories. It supports selection-on-observables, instrumental variables, regression discontinuity, and difference-in-differences designs.
Computes a range of scatterplot diagnostics (scagnostics) on pairs of numerical variables in a data set. A range of scagnostics, including graph and association-based scagnostics described by Leland Wilkinson and Graham Wills (2008) <doi:10.1198/106186008X320465> and association-based scagnostics described by Katrin Grimm (2016,ISBN:978-3-8439-3092-5) can be computed. Summary and plotting functions are provided.
This package performs Bayesian calibration of computer models as per Kennedy and O'Hagan 2001. The package includes routines to find the hyperparameters and parameters; see the help page for stage1()
for a worked example using the toy dataset. A tutorial is provided in the calex.Rnw
vignette; and a suite of especially simple one dimensional examples appears in inst/doc/one.dim/
.