This package provides a spatial covariate-augmented overdispersed Poisson factor model is proposed to perform efficient latent representation learning method for high-dimensional large-scale spatial count data with additional covariates.
Character vector to numerical translation in Euros from Spanish spelled monetary quantities. Reverse translation from integer to Spanish. Upper limit is up to the millions range. Geocoding via Cadastral web site.
Create scaled ggplot representations of playing surfaces. Playing surfaces are drawn pursuant to rule-book specifications. This package should be used as a baseline plot for displaying any type of tracking data.
Currently there are many functions in S-PLUS that are missing in R. To facilitate the conversion of S-PLUS packages to R packages, this package provides some missing S-PLUS functionality in R.
Fast SVMlight reader and writer. SVMlight is most commonly used format for storing sparse matrices (possibly with some target variable) on disk. For additional information about SVMlight format see <http://svmlight.joachims.org/>.
Simple utilities to design and generate density functions on bounded regions in space and space-time, and simulate independent, identically distributed data therefrom. See Davies & Lawson (2019) <doi:10.1080/00949655.2019.1575066> for example.
The systemPipeShiny (SPS) framework comes with many useful utility functions. However, installing the whole framework is heavy and takes some time. If you like only a few useful utility functions from SPS, install this package is enough.
This package provides a sparklyr extension package providing an integration with Google BigQuery'. It supports direct import/export where records are directly streamed from/to BigQuery'. In addition, data may be imported/exported via intermediate data extracts on Google Cloud Storage'.
Fits univariate and multivariate spatio-temporal random effects models for point-referenced data using Markov chain Monte Carlo (MCMC). Details are given in Finley, Banerjee, and Gelfand (2015) <doi:10.18637/jss.v063.i13> and Finley and Banerjee <doi:10.1016/j.envsoft.2019.104608>.
This package implements the spatially aware library size normalisation algorithm, SpaNorm. SpaNorm normalises out library size effects while retaining biology through the modelling of smooth functions for each effect. Normalisation is performed in a gene- and cell-/spot- specific manner, yielding library size adjusted data.
It can be useful to temporarily hide some text or other HTML elements in Shiny applications. Building on Spoiler-Alert.js', it is possible to select the elements to hide at startup, to partially reveal them by hovering them, and to completely show them when clicking on them.
Provide regularized maximum covariance analysis incorporating smoothness, sparseness and orthogonality of couple patterns by using the alternating direction method of multipliers algorithm. The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D (Wang and Huang, 2018 <doi:10.1002/env.2481>).
Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigen-functions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <DOI:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.
Fits, spatially predicts and temporally forecasts large amounts of space-time data using [1] Bayesian Gaussian Process (GP) Models, [2] Bayesian Auto-Regressive (AR) Models, and [3] Bayesian Gaussian Predictive Processes (GPP) based AR Models for spatio-temporal big-n problems. Bakar and Sahu (2015) <doi:10.18637/jss.v063.i15>.
An implementation of a computationally efficient method to fit large-scale interaction models based on the reluctant interaction selection principle. The method and its properties are described in greater depth in Yu, G., Bien, J., and Tibshirani, R.J. (2019) "Reluctant interaction modeling", which is available at <arXiv:1907.08414>.
This package implements the SPCAvRP algorithm, developed and analysed in "Sparse principal component analysis via random projections" Gataric, M., Wang, T. and Samworth, R. J. (2018) <arXiv:1712.05630>. The algorithm is based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix.
Detects spatial and temporal groups in GPS relocations (Robitaille et al. (2019) <doi:10.1111/2041-210X.13215>). It can be used to convert GPS relocations to gambit-of-the-group format to build proximity-based social networks In addition, the randomizations function provides data-stream randomization methods suitable for GPS data.
This package provides a unified interface to a variety of GSEA techniques from different bioconductor packages. Results are harmonized into a single object and can be interrogated uniformly for quick exploration and interpretation of results. Interactive exploration of GSEA results is enabled through a shiny app provided by a sparrow.shiny sibling package.
The Spectra package defines an efficient infrastructure for storing and handling mass spectrometry spectra and functionality to subset, process, visualize and compare spectra data. It provides different implementations (backends) to store mass spectrometry data. These comprise backends tuned for fast data access and processing and backends for very large data sets ensuring a small memory footprint.
This package performs a gene expression data analysis to detect condition-specific genes. Such genes are significantly up- or down-regulated in a small number of conditions. It does so by fitting a mixture of normal distributions to the expression values. Conditions can be environmental conditions, different tissues, organs or any other sources that you wish to compare in terms of gene expression.
This package contains an R Markdown template for a clinical trial protocol adhering to the SPIRIT statement. The SPIRIT (Standard Protocol Items for Interventional Trials) statement outlines recommendations for a minimum set of elements to be addressed in a clinical trial protocol. Also contains functions to create a xml document from the template and upload it to clinicaltrials.gov<https://www.clinicaltrials.gov/> for trial registration.
Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Rossoni, D. F., & Lima, R. R. (2019) <doi:10.28951/rbb.v37i2.388>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
This package provides a collection of functions to deal with spatial and spatiotemporal autoregressive conditional heteroscedasticity (spatial ARCH and GARCH models) by Otto, Schmid, Garthoff (2018, Spatial Statistics) <doi:10.1016/j.spasta.2018.07.005>: simulation of spatial ARCH-type processes (spARCH, log/exponential-spARCH, complex-spARCH); quasi-maximum-likelihood estimation of the parameters of spARCH models and spatial autoregressive models with spARCH disturbances, diagnostic checks, visualizations.
Fit, summarize, and predict for a variety of spatial statistical models applied to point-referenced and areal (lattice) data. Parameters are estimated using various methods. Additional modeling features include anisotropy, non-spatial random effects, partition factors, big data approaches, and more. Model-fit statistics are used to summarize, visualize, and compare models. Predictions at unobserved locations are readily obtainable. For additional details, see Dumelle et al. (2023) <doi:10.1371/journal.pone.0282524>.