Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Predict future values with hybrid combinations of Pattern Sequence based Forecasting (PSF), Autoregressive Integrated Moving Average (ARIMA), Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) methods based hybrid methods.
This package provides a parallel backend for the %dopar% function using the Rmpi package.
Identification of causal effects from arbitrary observational and experimental probability distributions via do-calculus and standard probability manipulations using a search-based algorithm by Tikka, Hyttinen and Karvanen (2021) <doi:10.18637/jss.v099.i05>. Allows for the presence of mechanisms related to selection bias (Bareinboim and Tian, 2015) <doi:10.1609/aaai.v29i1.9679>, transportability (Bareinboim and Pearl, 2014) <http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>, missing data (Mohan, Pearl, and Tian, 2013) <http://ftp.cs.ucla.edu/pub/stat_ser/r410.pdf>) and arbitrary combinations of these. Also supports identification in the presence of context-specific independence (CSI) relations through labeled directed acyclic graphs (LDAG). For details on CSIs see (Corander et al., 2019) <doi:10.1016/j.apal.2019.04.004>.
Dynamic model averaging for binary and continuous outcomes.
Base DataSHIELD functions for the client side. DataSHIELD is a software package which allows you to do non-disclosive federated analysis on sensitive data. DataSHIELD analytic functions have been designed to only share non disclosive summary statistics, with built in automated output checking based on statistical disclosure control. With data sites setting the threshold values for the automated output checks. For more details, see citation('dsBaseClient').
It generates summary statistics on the input dataset using different descriptive univariate statistical measures on entire data or at a group level. Though there are other packages which does similar job but each of these are deficient in one form or other, in the measures generated, in treating numeric, character and date variables alike, no functionality to view these measures on a group level or the way the output is represented. Given the foremost role of the descriptive statistics in any of the exploratory data analysis or solution development, there is a need for a more constructive, structured and refined version over these packages. This is the idea behind the package and it brings together all the required descriptive measures to give an initial understanding of the data quality, distribution in a faster,easier and elaborative way.The function brings an additional capability to be able to generate these statistical measures on the entire dataset or at a group level. It calculates measures of central tendency (mean, median), distribution (count, proportion), dispersion (min, max, quantile, standard deviation, variance) and shape (skewness, kurtosis). Addition to these measures, it provides information on the data type, count on no. of rows, unique entries and percentage of missing entries. More importantly the measures are generated based on the data types as required by them,rather than applying numerical measures on character and data variables and vice versa. Output as a dataframe object gives a very neat representation, which often is useful when working with a large number of columns. It can easily be exported as csv and analyzed further or presented as a summary report for the data.
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.
Helps to describe a data frame in hand. Has been developed during PhD work of the maintainer. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
This package contains a function called dmur() which accepts four parameters like possible values, probabilities of the values, selling cost and preparation cost. The dmur() function generates various numeric decision parameters like MEMV (Maximum (optimum) expected monitory value), best choice, EPPI (Expected profit with perfect information), EVPI (Expected value of the perfect information), EOL (Expected opportunity loss), which facilitate effective decision-making.
Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset.
Estimation of the average treatment effect when controlling for high-dimensional confounders using debiased inverse propensity score weighting (DIPW). DIPW relies on the propensity score following a sparse logistic regression model, but the regression curves are not required to be estimable. Despite this, our package also allows the users to estimate the regression curves and take the estimated curves as input to our methods. Details of the methodology can be found in Yuhao Wang and Rajen D. Shah (2020) "Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders" <arXiv:2011.08661>. The package relies on the optimisation software MOSEK <https://www.mosek.com/> which must be installed separately; see the documentation for Rmosek'.
This package provides a collection of tests to analyze the causal direction of dependence in linear models (Wiedermann, W., & von Eye, A., 2025, ISBN: 9781009381390). The package includes functions to perform Direction Dependence Analysis for variable distributions, residual distributions, and independence properties of predictors and residuals in competing causal models. In addition, the package contains functions to test the causal direction of dependence in conditional models (i.e., models with interaction terms) For more information see <https://www.ddaproject.com>.
This package provides a software package for using DEXi models. DEXi models are hierarchical qualitative multi-criteria decision models developed according to the method DEX (Decision EXpert, <https://dex.ijs.si/documentation/DEX_Method/DEX_Method.html>), using the program DEXi (<https://kt.ijs.si/MarkoBohanec/dexi.html>) or DEXiWin (<https://dex.ijs.si/dexisuite/dexiwin.html>). A typical workflow with DEXiR consists of: (1) reading a .dxi file, previously made using the DEXi software (function read_dexi()), (2) making a data frame containing input values of one or more decision alternatives, (3) evaluating those alternatives (function evaluate()), (4) analyzing alternatives (selective_explanation(), plus_minus(), compare_alternatives()), (5) drawing charts. DEXiR is restricted to using models produced externally by the DEXi software and does not provide functionality for creating and/or editing DEXi models directly in R'.
Allows manual creation of themes and logos to be used in applications created using the shinydashboard package. Removes the need to change the underlying css code by wrapping it into a set of convenient R functions.
An implementation of common statistical analysis and models with differential privacy (Dwork et al., 2006a) <doi:10.1007/11681878_14> guarantees. The package contains, for example, functions providing differentially private computations of mean, variance, median, histograms, and contingency tables. It also implements some statistical models and machine learning algorithms such as linear regression (Kifer et al., 2012) <https://proceedings.mlr.press/v23/kifer12.html> and SVM (Chaudhuri et al., 2011) <https://jmlr.org/papers/v12/chaudhuri11a.html>. In addition, it implements some popular randomization mechanisms, including the Laplace mechanism (Dwork et al., 2006a) <doi:10.1007/11681878_14>, Gaussian mechanism (Dwork et al., 2006b) <doi:10.1007/11761679_29>, analytic Gaussian mechanism (Balle & Wang, 2018) <https://proceedings.mlr.press/v80/balle18a.html>, and exponential mechanism (McSherry & Talwar, 2007) <doi:10.1109/FOCS.2007.66>.
Efficient Global Optimization (EGO) algorithm as described in "Roustant et al. (2012)" <doi:10.18637/jss.v051.i01> and adaptations for problems with noise ("Picheny and Ginsbourger, 2012") <doi:10.1016/j.csda.2013.03.018>, parallel infill, and problems with constraints.
This package provides friendly wrappers for creating duckdb'-backed connections to tabular datasets ('csv', parquet, etc) on local or remote file systems. This mimics the behaviour of "open_dataset" in the arrow package, but in addition to S3 file system also generalizes to any list of http URLs.
DAGs With Omitted Objects Displayed (DAGWOOD) is a framework to help reveal key hidden assumptions in a causal DAG. This package provides an implementation of the DAGWOOD algorithm. Further description can be found in Haber et al (2022) <DOI:10.1016/j.annepidem.2022.01.001>.
Quality control and formatting tools developed for the Copernicus Data Rescue Service. The package includes functions to handle the Station Exchange Format (SEF), various statistical tests for climate data at daily and sub-daily resolution, as well as functions to plot the data. For more information and documentation see <https://datarescue.climate.copernicus.eu/st_data-quality-control>.
Several statistical methods for analyzing survival data under various forms of dependent censoring are implemented in the package. In addition to accounting for dependent censoring, it offers tools to adjust for unmeasured confounding factors. The implemented approaches allow users to estimate the dependency between survival time and dependent censoring time, based solely on observed survival data. For more details on the methods, refer to Deresa and Van Keilegom (2021) <doi:10.1093/biomet/asaa095>, Czado and Van Keilegom (2023) <doi:10.1093/biomet/asac067>, Crommen et al. (2024) <doi:10.1007/s11749-023-00903-9>, Deresa and Van Keilegom (2024) <doi:10.1080/01621459.2022.2161387>, Willems et al. (2025) <doi:10.48550/arXiv.2403.11860>, Ding and Van Keilegom (2025) and D'Haen et al. (2025) <doi:10.1007/s10985-025-09647-0>.
This package provides functions are provided that facilitate the import and analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. CallRate', heterozygosity, reproducibility, maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR supports also the analysis of 3rd party software package such as newhybrid', structure', NeEstimator and blast'. Since version 2.0.3 we also implemented simulation functions, that allow to forward simulate SNP dynamics under different population and evolutionary dynamics. Comprehensive tutorials and support can be found at our github repository: github.com/green-striped-gecko/dartR/. If you want to cite dartR', you find the information by typing citation('dartR') in the console.
Robust distance-based methods applied to matrices and data frames, producing distance matrices that can be used as input for various visualization techniques such as graphs, heatmaps, or multidimensional scaling configurations. See Boj and Grané (2024) <doi:10.1016/j.seps.2024.101992>.
This package provides a simple way of fitting detection functions to distance sampling data for both line and point transects. Adjustment term selection, left and right truncation as well as monotonicity constraints and binning are supported. Abundance and density estimates can also be calculated (via a Horvitz-Thompson-like estimator) if survey area information is provided. See Miller et al. (2019) <doi:10.18637/jss.v089.i01> for more information on methods and <https://distancesampling.org/resources/vignettes.html> for example analyses.
This package provides a statistically and computationally efficient debiasing method for conducting valid inference on the high-dimensional linear regression function with missing outcomes. The reference paper is Zhang, Giessing, and Chen (2023) <arXiv:2309.06429>.