Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interact with the FRED API, <https://fred.stlouisfed.org/docs/api/fred/>, to fetch observations across economic series; find information about different economic sources, releases, series, etc.; conduct searches by series name, attributes, or tags; and determine the latest updates. Includes functions for creating panels of related variables with minimal effort and datasets containing data sources, releases, and popular FRED tags.
Detect events in time-series data. Combines multiple well-known R packages like forecast and neuralnet to deliver an easily configurable tool for multivariate event detection.
It contains functions for dose calculation for different routes, fitting data to probability distributions, random number generation (Monte Carlo simulation) and calculation of systemic and carcinogenic risks. For more information see the publication: Barrio-Parra et al. (2019) "Human-health probabilistic risk assessment: the role of exposure factors in an urban garden scenario" <doi:10.1016/j.landurbplan.2019.02.005>.
Using variational techniques we address some epidemiological problems as the incidence curve decomposition by inverting the renewal equation as described in Alvarez et al. (2021) <doi:10.1073/pnas.2105112118> and Alvarez et al. (2022) <doi:10.3390/biology11040540> or the estimation of the functional relationship between epidemiological indicators. We also propose a learning method for the short time forecast of the trend incidence curve as described in Morel et al. (2022) <doi:10.1101/2022.11.05.22281904>.
Tests the equality of two covariance matrices, used in paper "Two sample tests for high dimensional covariance matrices." Li and Chen (2012) <arXiv:1206.0917>.
Testing for parallel trends is crucial in the Difference-in-Differences framework. To this end, this package performs equivalence testing in the context of Difference-in-Differences estimation. It allows users to test if pre-treatment trends in the treated group are â equivalentâ to those in the control group. Here, â equivalenceâ means that rejection of the null hypothesis implies that a function of the pre-treatment placebo effects (maximum absolute, average or root mean squared value) does not exceed a pre-specified threshold below which trend differences are considered negligible. The package is based on the theory developed in Dette & Schumann (2024) <doi:10.1080/07350015.2024.2308121>.
Function and data sets in the book entitled "R ile Temel Ekonometri", S.Guris, E.C.Akay, B. Guris(2020). The book published in Turkish. It is possible to makes Durbin two stage method for autocorrelation, generalized differencing method for correction autocorrelation, Hausman Test for identification and computes LM, LR and Wald test statistics for redundant variable by using the functions written in this package.
An approach and software for modelling marine and freshwater ecosystems. It is articulated entirely around trophic levels. EcoTroph's key displays are bivariate plots, with trophic levels as the abscissa, and biomass flows or related quantities as ordinates. Thus, trophic ecosystem functioning can be modelled as a continuous flow of biomass surging up the food web, from lower to higher trophic levels, due to predation and ontogenic processes. Such an approach, wherein species as such disappear, may be viewed as the ultimate stage in the use of the trophic level metric for ecosystem modelling, providing a simplified but potentially useful caricature of ecosystem functioning and impacts of fishing. This version contains catch trophic spectrum analysis (CTSA) function and corrected versions of the mf.diagnosis and create.ETmain functions.
Interactive labelling of scatter plots, volcano plots and Manhattan plots using a shiny and plotly interface. Users can hover over points to see where specific points are located and click points on/off to easily label them. Labels can be dragged around the plot to place them optimally. Plots can be exported directly to PDF for publication. For plots with large numbers of points, points can optionally be rasterized as a bitmap, while all other elements (axes, text, labels & lines) are preserved as vector objects. This can dramatically reduce file size for plots with millions of points such as Manhattan plots, and is ideal for publication.
Statistical tools for environmental and ecological surveys. Simulation-based power and precision analysis; detection probabilities from different survey designs; visual fast count estimation.
This package contains data about emojis with relevant metadata, and functions to work with emojis when they are in strings.
Presents a "Scenarios" class containing general parameters, risk parameters and projection results. Risk parameters are gathered together into a ParamsScenarios sub-object. The general process for using this package is to set all needed parameters in a Scenarios object, use the customPathsGeneration method to proceed to the projection, then use xxx_PriceDistribution() methods to get asset prices.
Models integrate environmental DNA (eDNA) detection data and traditional survey data to jointly estimate species catch rate (see package vignette: <https://ednajoint.netlify.app/>). Models can be used with count data via traditional survey methods (i.e., trapping, electrofishing, visual) and replicated eDNA detection/nondetection data via polymerase chain reaction (i.e., PCR or qPCR) from multiple survey locations. Estimated parameters include probability of a false positive eDNA detection, a site-level covariates that scale the sensitivity of eDNA surveys relative to traditional surveys, and gear scaling coefficients for traditional gear types. Models are implemented with a Bayesian framework (Markov chain Monte Carlo) using the Stan probabilistic programming language.
This package provides methods to simulate and analyse the size and length of branching processes with an arbitrary offspring distribution. These can be used, for example, to analyse the distribution of chain sizes or length of infectious disease outbreaks, as discussed in Farrington et al. (2003) <doi:10.1093/biostatistics/4.2.279>.
Runs a Shiny App in the local machine for basic statistical and graphical analyses. The point-and-click interface of Shiny App enables obtaining the same analysis outputs (e.g., plots and tables) more quickly, as compared with typing the required code in R, especially for users without much experience or expertise with coding. Examples of possible analyses include tabulating descriptive statistics for a variable, creating histograms by experimental groups, and creating a scatter plot and calculating the correlation between two variables.
This package provides functions for computing critical values and implementing the one-sided/two-sided EL tests.
Conduct numerous exploratory analyses in an instant with a point-and-click interface. With one simple command, this tool launches a Shiny App on the local machine. Drag and drop variables in a data set to categorize them as possible independent, dependent, moderating, or mediating variables. Then run dozens (or hundreds) of analyses instantly to uncover any statistically significant relationships among variables. Any relationship thus uncovered should be tested in follow-up studies. This tool is designed only to facilitate exploratory analyses and should NEVER be used for p-hacking. Many of the functions used in this package are previous versions of functions in the R Packages kim and ezr'. Selected References: Chang et al. (2021) <https://CRAN.R-project.org/package=shiny>. Dowle et al. (2021) <https://CRAN.R-project.org/package=data.table>. Kim (2023) <https://jinkim.science/docs/kim.pdf>. Kim (2021) <doi:10.5281/zenodo.4619237>. Kim (2020) <https://CRAN.R-project.org/package=ezr>. Simmons et al. (2011) <doi:10.1177/0956797611417632> Tingley et al. (2019) <https://CRAN.R-project.org/package=mediation>. Wickham et al. (2020) <https://CRAN.R-project.org/package=ggplot2>.
Build entity relationship diagrams (ERD) to specify the nature of the relationship between tables in a database.
The purpose of this package is to estimate the potential of urban agriculture to contribute to addressing several urban challenges at the city-scale. Within this aim, we selected 8 indicators directly related to one or several urban challenges. Also, a function is provided to compute new scenarios of urban agriculture. Methods are described by Pueyo-Ros, Comas & Corominas (2023) <doi:10.12688/openreseurope.16054.1>.
This package provides functions to test for gene x gene interactions in a bi-parental population of inbred lines. The data are fitted with the mixed linear model described in Rio et al. (2022) <doi:10.1101/2022.12.18.520958>, that accounts for gene x gene interactions at both the fixed effect and variance levels. The package also provides graphical tools to display the gene x gene interaction trend at the mean level and the variance component analysis.
Generate citations and references for R packages from CRAN or Bioconductor. Supports RIS and BibTeX formats with automatic DOI retrieval from GitHub repositories and published papers. Includes command-line interface for batch processing.
Collection of ancillary functions and utilities for Partial Linear Single Index Models for Environmental mixture analyses, which currently provides functions for scalar outcomes. The outputs of these functions include the single index function, single index coefficients, partial linear coefficients, mixture overall effect, exposure main and interaction effects, and differences of quartile effects. In the future, we will add functions for binary, ordinal, Poisson, survival, and longitudinal outcomes, as well as models for time-dependent exposures. See Wang et al (2020) <doi:10.1186/s12940-020-00644-4> for an overview.
This package provides methods for constructing confidence or credible regions for exceedance sets and contour lines.
Deliver the full functionality of ECharts with minimal overhead. echarty users build R lists for ECharts API. Lean set of powerful commands.