Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Retrieves code comment decorations for C++ languages of the form \\ [[xyz]]', which are used for automated wrapping of C++ functions.
Datasets and functions to accompany the book Analisis de datos con el programa estadistico R: una introduccion aplicada by Salas-Eljatib (2021, ISBN: 9789566086109). The package helps carry out data management, exploratory analyses, and model fitting.
This package provides a modified hierarchical test (Liu (2017) <doi:10.1214/17-AOS1539>) for detecting the structural difference between two Semiparametric Gaussian graphical models. The multiple testing procedure asymptotically controls the false discovery rate (FDR) at a user-specified level. To construct the test statistic, a truncated estimator is used to approximate the transformation functions and two R functions including lassoGGM() and lassoNPN() are provided to compute the lasso estimates of the regression coefficients.
Regression for a discrete response, where the conditional distribution is modelled via a discrete Weibull distribution.
This dataset includes Background and Pathway data used in package DysPIA'.
Constructs dynamic optimal shrinkage estimators for the weights of the global minimum variance portfolio which are reconstructed at given reallocation points as derived in Bodnar, Parolya, and Thorsén (2021) (<arXiv:2106.02131>). Two dynamic shrinkage estimators are available in this package. One using overlapping samples while the other use nonoverlapping samples.
This package implements two out-of box classifiers presented in <doi:10.1002/env.2848> for distinguishing forest and non-forest terrain images. Under these algorithms, there are frequentist approaches: one parametric, using stable distributions, and another one- non-parametric, using the squared Mahalanobis distance. The package also contains functions for data handling and building of new classifiers as well as some test data set.
This package provides mean squared error (MSE) and plot the kernel densities related to extreme value distributions with their estimated values. By using Gumbel and Weibull Kernel. See Salha et al. (2014) <doi:10.4236/ojs.2014.48061> and Khan and Akbar (2021) <doi:10.4236/ojs.2021.112018 >.
This package produces SPSS- and SAS-like output for linear discriminant function analysis and canonical correlation analysis. The methods are described in Manly & Alberto (2017, ISBN:9781498728966), Rencher (2002, ISBN:0-471-41889-7), and Tabachnik & Fidell (2019, ISBN:9780134790541).
The goal of dndR is to provide a suite of Dungeons & Dragons related functions. This package is meant to be useful both to players and Dungeon Masters (DMs). Some functions apply to many tabletop role-playing games (e.g., dice rolling), but others are focused on Fifth Edition (a.k.a. "5e") and where possible both the 2014 and 2024 versions are supported.
This package implements the distribution-free goodness-of-fit regression test for the mean structure of parametric models introduced in Khmaladze (2021) <doi:10.1007/s10463-021-00786-3>. The test is implemented for general functions with minimal distributional assumptions as well as common models (e.g., lm, glm) with the usual assumptions.
This package creates discretised versions of continuous distribution functions by mapping continuous values to an underlying discrete grid, based on a (uniform) frequency of discretisation, a valid discretisation point, and an integration range. For a review of discretisation methods, see Chakraborty (2015) <doi:10.1186/s40488-015-0028-6>.
This package provides a Scannerless GLR parser/parser generator. Note that GLR standing for "generalized LR", where L stands for "left-to-right" and R stands for "rightmost (derivation)". For more information see <https://en.wikipedia.org/wiki/GLR_parser>. This parser is based on the Tomita (1987) algorithm. (Paper can be found at <https://aclanthology.org/P84-1073.pdf>). The original dparser package documentation can be found at <https://dparser.sourceforge.net/>. This allows you to add mini-languages to R (like rxode2's ODE mini-language Wang, Hallow, and James 2015 <DOI:10.1002/psp4.12052>) or to parse other languages like NONMEM to automatically translate them to R code. To use this in your code, add a LinkingTo dparser in your DESCRIPTION file and instead of using #include <dparse.h> use #include <dparser.h>. This also provides a R-based port of the make_dparser <https://dparser.sourceforge.net/d/make_dparser.cat> command called mkdparser(). Additionally you can parse an arbitrary grammar within R using the dparse() function, which works on most OSes and is mainly for grammar testing. The fastest parsing, of course, occurs at the C level, and is suggested.
Multivariate Gaussian mixture model with a determinant point process prior to promote the discovery of parsimonious components from observed data. See Xu, Mueller, Telesca (2016) <doi:10.1111/biom.12482>.
Automated data exploration process for analytic tasks and predictive modeling, so that users could focus on understanding data and extracting insights. The package scans and analyzes each variable, and visualizes them with typical graphical techniques. Common data processing methods are also available to treat and format data.
An implementation of distributional random forests as introduced in Cevid & Michel & Naf & Meinshausen & Buhlmann (2022) <doi:10.48550/arXiv.2005.14458>.
Make inference in a mixture of discrete Laplace distributions using the EM algorithm. This can e.g. be used for modelling the distribution of Y chromosomal haplotypes as described in [1, 2] (refer to the URL section).
Implementation of Das Gupta's standardisation and decomposition of population rates, as set out "Standardization and decomposition of rates: A userâ s manual", Das Gupta (1993) <https://www2.census.gov/library/publications/1993/demographics/p23-186.pdf>. The goal of these methods is to calculate adjusted rates based on compositional factors and quantify the contribution of each factor to the difference in crude rates between populations. The package offers functionality to handle various scenarios for any number of factors and populations, where said factors can be comprised of vectors across sub-populations (including cross-classified population breakdowns), and with the option to specify user-defined rate functions.
In practice, we will encounter problems where the longitudinal performance of processes needs to be monitored over time. Dynamic screening systems (DySS) are methods that aim to identify and give signals to processes with poor performance as early as possible. This package is designed to implement dynamic screening systems and the related methods. References: Qiu, P. and Xiang, D. (2014) <doi:10.1080/00401706.2013.822423>; Qiu, P. and Xiang, D. (2015) <doi:10.1002/sim.6477>; Li, J. and Qiu, P. (2016) <doi:10.1080/0740817X.2016.1146423>; Li, J. and Qiu, P. (2017) <doi:10.1002/qre.2160>; You, L. and Qiu, P. (2019) <doi:10.1080/00949655.2018.1552273>; Qiu, P., Xia, Z., and You, L. (2020) <doi:10.1080/00401706.2019.1604434>; You, L., Qiu, A., Huang, B., and Qiu, P. (2020) <doi:10.1002/bimj.201900127>; You, L. and Qiu, P. (2021) <doi:10.1080/00224065.2020.1767006>.
This package performs cluster analysis using an ensemble clustering framework, Chiu & Talhouk (2018) <doi:10.1186/s12859-017-1996-y>. Results from a diverse set of algorithms are pooled together using methods such as majority voting, K-Modes, LinkCluE, and CSPA. There are options to compare cluster assignments across algorithms using internal and external indices, visualizations such as heatmaps, and significance testing for the existence of clusters.
Flexible and efficient cleaning of data with interactivity. datacleanr facilitates best practices in data analyses and reproducibility with built-in features and by translating interactive/manual operations to code. The package is designed for interoperability, and so seamlessly fits into reproducible analyses pipelines in R'.
This package provides tools to help the design and analysis of resilient non-inferiority trials. These include functions for sample size calculations and analyses of trials, with either a risk difference, risk ratio or arc-sine difference margin, and a function to run simulations to design a trial with the methods described in Quartagno et al. (2019) <arXiv:1905.00241>.
This package implements the Improved Expectation Maximisation EM* and the traditional EM algorithm for clustering big data (gaussian mixture models for both multivariate and univariate datasets). This version implements the faster alternative-EM* that expedites convergence via structure based data segregation. The implementation supports both random and K-means++ based initialization. Reference: Parichit Sharma, Hasan Kurban, Mehmet Dalkilic (2022) <doi:10.1016/j.softx.2021.100944>. Hasan Kurban, Mark Jenne, Mehmet Dalkilic (2016) <doi:10.1007/s41060-017-0062-1>.
Compares the fit of alternative models of continuous trait differentiation between sister species and other paired lineages. Differences in trait means between two lineages arise as they diverge from a common ancestor, and alternative processes of evolutionary divergence are expected to leave unique signatures in the distribution of trait differentiation in datasets comprised of many lineage pairs. Models include approximations of divergent selection, drift, and stabilizing selection. A variety of model extensions facilitate the testing of process-to-pattern hypotheses. Users supply trait data and divergence times for each lineage pair. The fit of alternative models is compared in a likelihood framework.