_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-musicxml 1.0.1
Propagated dependencies: r-xml2@1.3.6
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=musicXML
Licenses: GPL 3
Synopsis: Data Sonification using 'musicXML'
Description:

This package provides a set of tools to facilitate data sonification and handle the musicXML format <https://usermanuals.musicxml.com/MusicXML/Content/XS-MusicXML.htm>. Several classes are defined for basic musical objects such as note pitch, note duration, note, measure and score. Moreover, sonification utilities functions are provided, e.g. to map data into musical attributes such as pitch, loudness or duration. A typical sonification workflow hence looks like: get data; map them to musical attributes; create and write the musicXML score, which can then be further processed using specialized music software (e.g. MuseScore', GuitarPro', etc.). Examples can be found in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).

r-sysagnps 1.0.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.4 r-rio@1.2.3 r-rcolorbrewer@1.1-3 r-purrr@1.0.2 r-patchwork@1.3.0 r-magrittr@2.0.3 r-ggpubr@0.6.0 r-ggplot2@3.5.1 r-forcats@1.0.0 r-expm@1.0-0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/xitingwang-ida/sysAgNPs
Licenses: GPL 3+
Synopsis: Systematic Quantification of AgNPs to Unleash their Potential for Applicability
Description:

There is variation across AgNPs due to differences in characterization techniques and testing metrics employed in studies. To address this problem, we have developed a systematic evaluation framework called sysAgNPs'. Within this framework, Distribution Entropy (DE) is utilized to measure the uncertainty of feature categories of AgNPs, Proclivity Entropy (PE) assesses the preference of these categories, and Combination Entropy (CE) quantifies the uncertainty of feature combinations of AgNPs. Additionally, a Markov chain model is employed to examine the relationships among the sub-features of AgNPs and to determine a Transition Score (TS) scoring standard that is based on steady-state probabilities. The sysAgNPs framework provides metrics for evaluating AgNPs, which helps to unravel their complexity and facilitates effective comparisons among different AgNPs, thereby advancing the scientific research and application of these AgNPs.

r-mapscape 1.30.0
Propagated dependencies: r-stringr@1.5.1 r-jsonlite@1.8.9 r-htmlwidgets@1.6.4 r-base64enc@0.1-3
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://bioconductor.org/packages/mapscape
Licenses: GPL 3
Synopsis: mapscape
Description:

MapScape integrates clonal prevalence, clonal hierarchy, anatomic and mutational information to provide interactive visualization of spatial clonal evolution. There are four inputs to MapScape: (i) the clonal phylogeny, (ii) clonal prevalences, (iii) an image reference, which may be a medical image or drawing and (iv) pixel locations for each sample on the referenced image. Optionally, MapScape can accept a data table of mutations for each clone and their variant allele frequencies in each sample. The output of MapScape consists of a cropped anatomical image surrounded by two representations of each tumour sample. The first, a cellular aggregate, visually displays the prevalence of each clone. The second shows a skeleton of the clonal phylogeny while highlighting only those clones present in the sample. Together, these representations enable the analyst to visualize the distribution of clones throughout anatomic space.

r-scan-upc 2.48.0
Propagated dependencies: r-sva@3.54.0 r-oligo@1.70.0 r-mass@7.3-61 r-iranges@2.40.0 r-geoquery@2.74.0 r-foreach@1.5.2 r-biostrings@2.74.0 r-biobase@2.66.0 r-affyio@1.76.0 r-affy@1.84.0
Channel: guix-bioc
Location: guix-bioc/packages/s.scm (guix-bioc packages s)
Home page: http://bioconductor.org
Licenses: Expat
Synopsis: Single-channel array normalization (SCAN) and Universal exPression Codes (UPC)
Description:

SCAN is a microarray normalization method to facilitate personalized-medicine workflows. Rather than processing microarray samples as groups, which can introduce biases and present logistical challenges, SCAN normalizes each sample individually by modeling and removing probe- and array-specific background noise using only data from within each array. SCAN can be applied to one-channel (e.g., Affymetrix) or two-channel (e.g., Agilent) microarrays. The Universal exPression Codes (UPC) method is an extension of SCAN that estimates whether a given gene/transcript is active above background levels in a given sample. The UPC method can be applied to one-channel or two-channel microarrays as well as to RNA-Seq read counts. Because UPC values are represented on the same scale and have an identical interpretation for each platform, they can be used for cross-platform data integration.

r-multpois 0.3.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/wobbrock/multpois/
Licenses: GPL 2+
Synopsis: Analyze Nominal Response Data with the Multinomial-Poisson Trick
Description:

Dichotomous responses having two categories can be analyzed with stats::glm() or lme4::glmer() using the family=binomial option. Unfortunately, polytomous responses with three or more unordered categories cannot be analyzed similarly because there is no analogous family=multinomial option. For between-subjects data, nnet::multinom() can address this need, but it cannot handle random factors and therefore cannot handle repeated measures. To address this gap, we transform nominal response data into counts for each categorical alternative. These counts are then analyzed using (mixed) Poisson regression as per Baker (1994) <doi:10.2307/2348134>. Omnibus analyses of variance can be run along with post hoc pairwise comparisons. For users wishing to analyze nominal responses from surveys or experiments, the functions in this package essentially act as though stats::glm() or lme4::glmer() provide a family=multinomial option.

r-multimix 1.0-10
Propagated dependencies: r-mvtnorm@1.3-2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/jmcurran/multimix
Licenses: GPL 2+
Synopsis: Fit Mixture Models Using the Expectation Maximisation (EM) Algorithm
Description:

This package provides a set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1--22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153--171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429--440.

r-tspredit 1.0.787
Propagated dependencies: r-wavelets@0.3-0.2 r-mfilter@0.1-5 r-kfas@1.5.1 r-hht@2.1.6 r-forecast@8.23.0 r-dplyr@1.1.4 r-desctools@0.99.58 r-daltoolbox@1.1.727
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/cefet-rj-dal/daltoolbox
Licenses: Expat
Synopsis: Time Series Prediction Integrated Tuning
Description:

Prediction is one of the most important activities while working with time series. There are many alternative ways to model the time series. Finding the right one is challenging to model them. Most data-driven models (either statistical or machine learning) demand tuning. Setting them right is mandatory for good predictions. It is even more complex since time series prediction also demands choosing a data pre-processing that complies with the chosen model. Many time series frameworks have features to build and tune models. The package differs as it provides a framework that seamlessly integrates tuning data pre-processing activities with the building of models. The package provides functions for defining and conducting time series prediction, including data pre(post)processing, decomposition, tuning, modeling, prediction, and accuracy assessment. More information is available at Izau et al. <doi:10.5753/sbbd.2022.224330>.

r-adimpute 1.16.0
Propagated dependencies: r-biocparallel@1.40.0 r-checkmate@2.3.2 r-data-table@1.16.2 r-drimpute@1.0 r-kernlab@0.9-33 r-mass@7.3-61 r-matrix@1.7-1 r-rsvd@1.0.5 r-s4vectors@0.44.0 r-saver@1.1.2 r-singlecellexperiment@1.28.1 r-summarizedexperiment@1.36.0
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://bioconductor.org/packages/ADImpute
Licenses: GPL 3+
Synopsis: Adaptive computational prediction for dropout imputations
Description:

Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (dropout imputation). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. The ADImpute package proposes two methods to address this issue:

  1. a gene regulatory network-based approach using gene-gene relationships learnt from external data;

  2. a baseline approach corresponding to a sample-wide average.

ADImpute implements these novel methods and also combines them with existing imputation methods like DrImpute and SAVER. ADImpute can learn the best performing method per gene and combine the results from different methods into an ensemble.

r-emulator 1.2-24
Propagated dependencies: r-mvtnorm@1.3-2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/RobinHankin/emulator
Licenses: GPL 2+ GPL 3+
Synopsis: Bayesian emulation of computer programs
Description:

This package allows one to estimate the output of a computer program, as a function of the input parameters, without actually running it. The computer program is assumed to be a Gaussian process, whose parameters are estimated using Bayesian techniques that give a PDF of expected program output. This PDF is conditional on a training set of runs, each consisting of a point in parameter space and the model output at that point. The emphasis is on complex codes that take weeks or months to run, and that have a large number of undetermined input parameters; many climate prediction models fall into this class. The emulator essentially determines Bayesian posterior estimates of the PDF of the output of a model, conditioned on results from previous runs and a user-specified prior linear model. The package includes functionality to evaluate quadratic forms efficiently.

r-facmodcs 1.0
Propagated dependencies: r-zoo@1.8-12 r-xts@0.14.1 r-tseries@0.10-58 r-sn@2.1.1 r-robustbase@0.99-4-1 r-robstattm@1.0.11 r-performanceanalytics@2.0.4 r-lattice@0.22-6 r-data-table@1.16.2
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/robustport/facmodCS
Licenses: GPL 2
Synopsis: Cross-Section Factor Models
Description:

Linear cross-section factor model fitting with least-squares and robust fitting the lmrobdetMM() function from RobStatTM'; related volatility, Value at Risk and Expected Shortfall risk and performance attribution (factor-contributed vs idiosyncratic returns); tabular displays of risk and performance reports; factor model Monte Carlo. The package authors would like to thank Chicago Research on Security Prices,LLC for the cross-section of about 300 CRSP stocks data (in the data.table object stocksCRSP', and S&P GLOBAL MARKET INTELLIGENCE for contributing 14 factor scores (a.k.a "alpha factors".and "factor exposures") fundamental data on the 300 companies in the data.table object factorSPGMI'. The stocksCRSP and factorsSPGMI data are not covered by the GPL-2 license, are not provided as open source of any kind, and they are not to be redistributed in any form.

r-tidycomm 0.4.1
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.4 r-purrr@1.0.2 r-pillar@1.9.0 r-misty@0.7.1 r-mbess@4.9.3 r-mass@7.3-61 r-magrittr@2.0.3 r-lubridate@1.9.3 r-lm-beta@1.7-2 r-glue@1.8.0 r-ggplot2@3.5.1 r-ggally@2.2.1 r-forcats@1.0.0 r-fastdummies@1.7.4 r-dplyr@1.1.4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://joon-e.github.io/tidycomm/
Licenses: GPL 3
Synopsis: Data Modification and Analysis for Communication Research
Description:

This package provides convenience functions for common data modification and analysis tasks in communication research. This includes functions for univariate and bivariate data analysis, index generation and reliability computation, and intercoder reliability tests. All functions follow the style and syntax of the tidyverse, and are construed to perform their computations on multiple variables at once. Functions for univariate and bivariate data analysis comprise summary statistics for continuous and categorical variables, as well as several tests of bivariate association including effect sizes. Functions for data modification comprise index generation and automated reliability analysis of index variables. Functions for intercoder reliability comprise tests of several intercoder reliability estimates, including simple and mean pairwise percent agreement, Krippendorff's Alpha (Krippendorff 2004, ISBN: 9780761915454), and various Kappa coefficients (Brennan & Prediger 1981 <doi: 10.1177/001316448104100307>; Cohen 1960 <doi: 10.1177/001316446002000104>; Fleiss 1971 <doi: 10.1037/h0031619>).

r-textrank 0.3.1
Propagated dependencies: r-igraph@2.1.1 r-digest@0.6.37 r-data-table@1.16.2
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/bnosac/textrank
Licenses: FSDG-compatible
Synopsis: Summarize Text by Ranking Sentences and Finding Keywords
Description:

The textrank algorithm is an extension of the Pagerank algorithm for text. The algorithm allows to summarize text by calculating how sentences are related to one another. This is done by looking at overlapping terminology used in sentences in order to set up links between sentences. The resulting sentence network is next plugged into the Pagerank algorithm which identifies the most important sentences in your text and ranks them. In a similar way textrank can also be used to extract keywords. A word network is constructed by looking if words are following one another. On top of that network the Pagerank algorithm is applied to extract relevant words after which relevant words which are following one another are combined to get keywords. More information can be found in the paper from Mihalcea, Rada & Tarau, Paul (2004) <https://www.aclweb.org/anthology/W04-3252/>.

r-whitebox 2.4.0
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://whiteboxr.gishub.org/
Licenses: Expat
Synopsis: 'WhiteboxTools' R Frontend
Description:

An R frontend for the WhiteboxTools library, which is an advanced geospatial data analysis platform developed by Prof. John Lindsay at the University of Guelph's Geomorphometry and Hydrogeomatics Research Group. WhiteboxTools can be used to perform common geographical information systems (GIS) analysis operations, such as cost-distance analysis, distance buffering, and raster reclassification. Remote sensing and image processing tasks include image enhancement (e.g. panchromatic sharpening, contrast adjustments), image mosaicing, numerous filtering operations, simple classification (k-means), and common image transformations. WhiteboxTools also contains advanced tooling for spatial hydrological analysis (e.g. flow-accumulation, watershed delineation, stream network analysis, sink removal), terrain analysis (e.g. common terrain indices such as slope, curvatures, wetness index, hillshading; hypsometric analysis; multi-scale topographic position analysis), and LiDAR data processing. Suggested citation: Lindsay (2016) <doi:10.1016/j.cageo.2016.07.003>.

r-twilight 1.82.0
Propagated dependencies: r-biobase@2.66.0
Channel: guix-bioc
Location: guix-bioc/packages/t.scm (guix-bioc packages t)
Home page: http://compdiag.molgen.mpg.de/software/twilight.shtml
Licenses: GPL 2+
Synopsis: Estimation of local false discovery rate
Description:

In a typical microarray setting with gene expression data observed under two conditions, the local false discovery rate describes the probability that a gene is not differentially expressed between the two conditions given its corrresponding observed score or p-value level. The resulting curve of p-values versus local false discovery rate offers an insight into the twilight zone between clear differential and clear non-differential gene expression. Package twilight contains two main functions: Function twilight.pval performs a two-condition test on differences in means for a given input matrix or expression set and computes permutation based p-values. Function twilight performs a stochastic downhill search to estimate local false discovery rates and effect size distributions. The package further provides means to filter for permutations that describe the null distribution correctly. Using filtered permutations, the influence of hidden confounders could be diminished.

r-bayesnec 2.1.3.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.4 r-purrr@1.0.2 r-loo@2.8.0 r-ggplot2@3.5.1 r-formula-tools@1.7.1 r-evaluate@1.0.1 r-dplyr@1.1.4 r-chk@0.9.2 r-brms@2.22.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://open-aims.github.io/bayesnec/
Licenses: GPL 2
Synopsis: Bayesian No-Effect- Concentration (NEC) Algorithm
Description:

Implementation of No-Effect-Concentration estimation that uses brms (see Burkner (2017)<doi:10.18637/jss.v080.i01>; Burkner (2018)<doi:10.32614/RJ-2018-017>; Carpenter et al. (2017)<doi:10.18637/jss.v076.i01> to fit concentration(dose)-response data using Bayesian methods for the purpose of estimating ECx values, but more particularly NEC (see Fox (2010)<doi:10.1016/j.ecoenv.2009.09.012>), NSEC (see Fisher and Fox (2023)<doi:10.1002/etc.5610>), and N(S)EC (see Fisher et al. 2023<doi:10.1002/ieam.4809>). A full description of this package can be found in Fisher et al. (2024)<doi:10.18637/jss.v110.i05>. This package expands and supersedes an original version implemented in R2jags (see Su and Yajima (2020)<https://CRAN.R-project.org/package=R2jags>; Fisher et al. (2020)<doi:10.5281/ZENODO.3966864>).

r-cifinder 2.0.0
Propagated dependencies: r-rdpack@2.6.1 r-ratesci@0.5.0 r-kableextra@1.4.0 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CIfinder
Licenses: GPL 3+
Synopsis: Estimate the Confidence Intervals for Predictive Values
Description:

Computes confidence intervals for the positive predictive value (PPV) and negative predictive value (NPV) based on varied scenarios. In situations where the proportion of diseased subjects does not correspond to the disease prevalence (e.g. case-control studies), this package provides two types of solutions: 1) five methods for estimating confidence intervals for PPV and NPV via ratio of two binomial proportions including Gart & Nam (1988), Walter (1975), MOVER-J (Laud, 2017), Fieller (1954), and Bootstrap (Efron, 1979); 2) three direct methods that compute the confidence intervals including Pepe (2003), Zhou (2007), and Delta. In prospective studies where the proportion of diseased subjects is an unbiased estimate of the disease prevalence, this package provides several methods for calculating the confidence intervals for PPV and NPV including Clopper-Pearson, Wald, Wilson, Agresti-Coull, and Beta. See the Details and References sections in the corresponding functions.

r-colossus 1.2
Propagated dependencies: r-tibble@3.2.1 r-testthat@3.2.1.1 r-stringr@1.5.1 r-rlang@1.1.4 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-processx@3.8.4 r-lubridate@1.9.3 r-dplyr@1.1.4 r-data-table@1.16.2 r-callr@3.7.6
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://ericgiunta.github.io/Colossus/
Licenses: GPL 3+
Synopsis: "Risk Model Regression and Analysis with Complex Non-Linear Models"
Description:

This package performs survival analysis using general non-linear models. Risk models can be the sum or product of terms. Each term is the product of exponential/linear functions of covariates. Additionally sub-terms can be defined as a sum of exponential, linear threshold, and step functions. Cox Proportional hazards <https://en.wikipedia.org/wiki/Proportional_hazards_model>, Poisson <https://en.wikipedia.org/wiki/Poisson_regression>, and Fine-Gray competing risks <https://www.publichealth.columbia.edu/research/population-health-methods/competing-risk-analysis> regression are supported. This work was sponsored by NASA Grant 80NSSC19M0161 through a subcontract from the National Council on Radiation Protection and Measurements (NCRP). The computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CNS-1006860, EPS-1006860, EPS-0919443, ACI-1440548, CHE-1726332, and NIH P20GM113109.

r-nhstplot 1.3.0
Propagated dependencies: r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nhstplot
Licenses: GPL 3
Synopsis: Plot Null Hypothesis Significance Tests
Description:

Illustrate graphically the most common Null Hypothesis Significance Testing procedures. More specifically, this package provides functions to plot Chi-Squared, F, t (one- and two-tailed) and z (one- and two-tailed) tests, by plotting the probability density under the null hypothesis as a function of the different test statistic values. Although highly flexible (color theme, fonts, etc.), only the minimal number of arguments (observed test statistic, degrees of freedom) are necessary for a clear and useful graph to be plotted, with the observed test statistic and the p value, as well as their corresponding value labels. The axes are automatically scaled to present the relevant part and the overall shape of the probability density function. This package is especially intended for education purposes, as it provides a helpful support to help explain the Null Hypothesis Significance Testing process, its use and/or shortcomings.

r-lobstahs 1.32.0
Propagated dependencies: r-xcms@4.4.0 r-camera@1.62.0
Channel: guix-bioc
Location: guix-bioc/packages/l.scm (guix-bioc packages l)
Home page: http://bioconductor.org/packages/LOBSTAHS
Licenses: FSDG-compatible
Synopsis: Lipid and Oxylipin Biomarker Screening through Adduct Hierarchy Sequences
Description:

LOBSTAHS is a multifunction package for screening, annotation, and putative identification of mass spectral features in large, HPLC-MS lipid datasets. In silico data for a wide range of lipids, oxidized lipids, and oxylipins can be generated from user-supplied structural criteria with a database generation function. LOBSTAHS then applies these databases to assign putative compound identities to features in any high-mass accuracy dataset that has been processed using xcms and CAMERA. Users can then apply a series of orthogonal screening criteria based on adduct ion formation patterns, chromatographic retention time, and other properties, to evaluate and assign confidence scores to this list of preliminary assignments. During the screening routine, LOBSTAHS rejects assignments that do not meet the specified criteria, identifies potential isomers and isobars, and assigns a variety of annotation codes to assist the user in evaluating the accuracy of each assignment.

r-synapsis 1.12.0
Propagated dependencies: r-ebimage@4.48.0
Channel: guix-bioc
Location: guix-bioc/packages/s.scm (guix-bioc packages s)
Home page: https://bioconductor.org/packages/synapsis
Licenses: Expat
Synopsis: An R package to automate the analysis of double-strand break repair during meiosis
Description:

Synapsis is a Bioconductor software package for automated (unbiased and reproducible) analysis of meiotic immunofluorescence datasets. The primary functions of the software can i) identify cells in meiotic prophase that are labelled by a synaptonemal complex axis or central element protein, ii) isolate individual synaptonemal complexes and measure their physical length, iii) quantify foci and co-localise them with synaptonemal complexes, iv) measure interference between synaptonemal complex-associated foci. The software has applications that extend to multiple species and to the analysis of other proteins that label meiotic prophase chromosomes. The software converts meiotic immunofluorescence images into R data frames that are compatible with machine learning methods. Given a set of microscopy images of meiotic spread slides, synapsis crops images around individual single cells, counts colocalising foci on strands on a per cell basis, and measures the distance between foci on any given strand.

r-bayescvi 1.0.1
Propagated dependencies: r-universalcvi@1.2.0 r-mclust@6.1.1 r-ggplot2@3.5.1 r-e1071@1.7-16
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesCVI
Licenses: GPL 3+
Synopsis: Bayesian Cluster Validity Index
Description:

Algorithms for computing and generating plots with and without error bars for Bayesian cluster validity index (BCVI) (O. Preedasawakul, and N. Wiroonsri, A Bayesian Cluster Validity Index, Computational Statistics & Data Analysis, 202, 108053, 2025. <doi:10.1016/j.csda.2024.108053>) based on several underlying cluster validity indexes (CVIs) including Calinski-Harabasz, Chou-Su-Lai, Davies-Bouldin, Dunn, Pakhira-Bandyopadhyay-Maulik, Point biserial correlation, the score function, Starczewski, and Wiroonsri indices for hard clustering, and Correlation Cluster Validity, the generalized C, HF, KWON, KWON2, Modified Pakhira-Bandyopadhyay-Maulik, Pakhira-Bandyopadhyay-Maulik, Tang, Wiroonsri-Preedasawakul, Wu-Li, and Xie-Beni indices for soft clustering. The package is compatible with K-means, fuzzy C means, EM clustering, and hierarchical clustering (single, average, and complete linkage). Though BCVI is compatible with any underlying existing CVIs, we recommend users to use either WI or WP as the underlying CVI.

r-bmconcor 2.0.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://fatelarico.github.io/BMconcor/
Licenses: GPL 3+
Synopsis: CONCOR for Structural- And Regular-Equivalence Blockmodeling
Description:

The four functions svdcp() ('cp for column partitioned), svdbip() or svdbip2() ('bip for bipartitioned), and svdbips() ('s for a simultaneous optimization of a set of r solutions), correspond to a singular value decomposition (SVD) by blocks notion, by supposing each block depending on relative subspaces, rather than on two whole spaces as usual SVD does. The other functions, based on this notion, are relative to two column partitioned data matrices x and y defining two sets of subsets x_i and y_j of variables and amount to estimate a link between x_i and y_j for the pair (x_i, y_j) relatively to the links associated to all the other pairs. These methods were first presented in: Lafosse R. & Hanafi M.,(1997) <https://eudml.org/doc/106424> and Hanafi M. & Lafosse, R. (2001) <https://eudml.org/doc/106494>.

r-fitconic 1.2.1
Propagated dependencies: r-pracma@2.4.4
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fitConic
Licenses: LGPL 3
Synopsis: Fit Data to Any Conic Section
Description:

Fit data to an ellipse, hyperbola, or parabola. Bootstrapping is available when needed. The conic curve can be rotated through an arbitrary angle and the fit will still succeed. Helper functions are provided to convert generator coefficients from one style to another, generate test data sets, rotate conic section parameters, and so on. References include Nikolai Chernov (2014) "Fitting ellipses, circles, and lines by least squares" <https://people.cas.uab.edu/~mosya/cl/>; A. W. Fitzgibbon, M. Pilu, R. B. Fisher (1999) "Direct Least Squares Fitting of Ellipses" IEEE Trans. PAMI, Vol. 21, pages 476-48; N. Chernov, Q. Huang, and H. Ma (2014) "Fitting quadratic curves to data points", British Journal of Mathematics & Computer Science, 4, 33-60; N. Chernov and H. Ma (2011) "Least squares fitting of quadratic curves and surfaces", Computer Vision, Editor S. R. Yoshida, Nova Science Publishers, pp. 285-302.

r-fishresp 1.1.2
Propagated dependencies: r-rmr@1.1.0 r-respirometry@2.0.2 r-mclust@6.1.1 r-lattice@0.22-6 r-chron@2.3-61
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://fishresp.org
Licenses: GPL 3
Synopsis: Analytical Tool for Aquatic Respirometry
Description:

Calculates metabolic rate of fish and other aquatic organisms measured using an intermittent-flow respirometry approach. The tool is used to run a set of graphical QC tests of raw respirometry data, correct it for background respiration and chamber effect, filter and extract target values of absolute and mass-specific metabolic rate. Experimental design should include background respiration tests and measuring of one or more metabolic rate traits. The R package is ideally integrated with the pump controller PumpResp and the DO meter SensResp (open-source hardware by FishResp). Raw respirometry data can be also imported from AquaResp (free software), AutoResp ('LoligoSystems'), OxyView ('PreSens'), Pyro Oxygen Logger ('PyroScience') and Q-box Aqua ('QubitSystems'). More information about the R package FishResp'is available in the publication by Morozov et al. (2019) <doi:10.1093/conphys/coz003>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249