Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides external JAR dependencies for the DatabaseConnector package.
This is an R implementation of Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure (DIFFEE). The DIFFEE algorithm can be used to fast estimate the differential network between two related datasets. For instance, it can identify differential gene network from datasets of case and control. By performing data-driven network inference from two high-dimensional data sets, this tool can help users effectively translate two aggregated data blocks into knowledge of the changes among entities between two Gaussian Graphical Model. Please run demo(diffeeDemo) to learn the basic functions provided by this package. For further details, please read the original paper: Beilun Wang, Arshdeep Sekhon, Yanjun Qi (2018) <arXiv:1710.11223>.
This package provides a tool to calculate the correlation boundary for the correlation between the response rate and the log-rank test statistic for the binary surrogate endpoint and the time-to-event primary endpoint, as well as conduct simulation studies to obtain design operating characteristics of the drop-the-losers design.
Algorithm to handle with optimal subset selection for distributed local principal component analysis. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>.
This package provides a toolbox for descriptive statistics, based on the computation of frequency and contingency tables. Several statistical functions and plot methods are provided to describe univariate or bivariate distributions of factors, integer series and numerical series either provided as individual values or as bins.
Computations for approximations and alternatives for the DPQ (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: '"dpq"'-functions.
Several tests for differential methylation in methylation array data, including one-sided differential mean and variance test. Methods used in the package refer to Dai, J, Wang, X, Chen, H and others (2021) "Incorporating increased variability in discovering cancer methylation markers", Biostatistics, submitted.
Implementation of the Dual Feature Reduction (DFR) approach for the Sparse Group Lasso (SGL) and the Adaptive Sparse Group Lasso (aSGL) (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.17094>). The DFR approach is a feature reduction approach that applies strong screening to reduce the feature space before optimisation, leading to speed-up improvements for fitting SGL (Simon et al. (2013) <doi:10.1080/10618600.2012.681250>) and aSGL (Mendez-Civieta et al. (2020) <doi:10.1007/s11634-020-00413-8> and Poignard (2020) <doi:10.1007/s10463-018-0692-7>) models. DFR is implemented using the Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) algorithm, with linear and logistic SGL models supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported.
The discrete Laplace exponential family for use in fitting generalized linear models.
Connect to the DocuSign Rest API <https://www.docusign.com/p/RESTAPIGuide/RESTAPIGuide.htm>, which supports embedded signing, and sending of documents.
Compare functional enrichment between two experimentally-derived groups of genes or proteins (Peterson, DR., et al.(2018)) <doi: 10.1371/journal.pone.0198139>. Given a list of gene symbols, diffEnrich will perform differential enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) REST API. This package provides a number of functions that are intended to be used in a pipeline. Briefly, the user provides a KEGG formatted species id for either human, mouse or rat, and the package will download and clean species specific ENTREZ gene IDs and map them to their respective KEGG pathways by accessing KEGG's REST API. KEGG's API is used to guarantee the most up-to-date pathway data from KEGG. Next, the user will identify significantly enriched pathways from two gene sets, and finally, the user will identify pathways that are differentially enriched between the two gene sets. In addition to the analysis pipeline, this package also provides a plotting function.
Estimates fractional trophic level from quantitative and qualitative diet data and calculates electivity indices in R. Borstein (2020) <doi:10.1007/s10750-020-04417-5>.
This function provides an interface between Matlab and R in facilitating fast processing for reading and saving DICOM images.
Calculate and analyze ecological connectivity across the watercourse of river networks using the Dendritic Connectivity Index.
An implementation of deliberative reasoning index (DRI) and related tools for analysis of deliberation survey data. Calculation of DRI, plot of intersubjective correlations (IC), generation of large-language model (LLM) survey data, and permutation tests are supported. Example datasets and a graphical user interface (GUI) are also available to support analysis. For more information, see Niemeyer and Veri (2022) <doi:10.1093/oso/9780192848925.003.0007>.
Monthly download stats of CRAN and Bioconductor packages. Download stats of CRAN packages is from the RStudio CRAN mirror', see <https://cranlogs.r-pkg.org:443>. Bioconductor package download stats is at <https://bioconductor.org/packages/stats/>.
This package provides select, insert, update, upsert, and delete database operations. Supports PostgreSQL', MySQL', SQLite', and more, and plays nicely with the DBI package.
Metabarcoding analysis using the DBTC package is implemented here using shiny in an interactive graphical user interface to conduct Metabarcode analyses and visualize and filter results.
Simulates and computes (maximum) likelihood of a dynamical model of community assembly that takes into account phylogenetic history.
Bindings for additional classification models for use with the parsnip package. Models include flavors of discriminant analysis, such as linear (Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>), regularized (Friedman (1989) <doi:10.1080/01621459.1989.10478752>), and flexible (Hastie, Tibshirani, and Buja (1994) <doi:10.1080/01621459.1994.10476866>), as well as naive Bayes classifiers (Hand and Yu (2007) <doi:10.1111/j.1751-5823.2001.tb00465.x>).
Profiles datasets (collecting statistics and informative summaries about that data) on data frames and ODBC tables: maximum, minimum, mean, standard deviation, nulls, distinct values, data patterns, data/format frequencies.
This package provides functions to import multiple files of multiple data file types ('.xlsx', .xls', .csv', .txt') from a given directory into R data frames.
Fast, flexible and user-friendly tools for distribution comparison through direct density ratio estimation. The estimated density ratio can be used for covariate shift adjustment, outlier-detection, change-point detection, classification and evaluation of synthetic data quality. The package implements multiple non-parametric estimation techniques (unconstrained least-squares importance fitting, ulsif(), Kullback-Leibler importance estimation procedure, kliep(), spectral density ratio estimation, spectral(), kernel mean matching, kmm(), and least-squares hetero-distributional subspace search, lhss()). with automatic tuning of hyperparameters. Helper functions are available for two-sample testing and visualizing the density ratios. For an overview on density ratio estimation, see Sugiyama et al. (2012) <doi:10.1017/CBO9781139035613> for a general overview, and the help files for references on the specific estimation techniques.
R package to build and simulate deterministic compartmental models that can be non-Markovian. Length of stay in each compartment can be defined to follow a parametric distribution (d_exponential(), d_gamma(), d_weibull(), d_lognormal()) or a non-parametric distribution (nonparametric()). Other supported types of transition from one compartment to another includes fixed transition (constant()), multinomial (multinomial()), fixed transition probability (transprob()).