_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-ipflasso 1.1
Propagated dependencies: r-survival@3.8-3 r-glmnet@4.1-8
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=ipflasso
Licenses: GPL 2+ GPL 3+
Synopsis: Integrative Lasso with Penalty Factors
Description:

The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen from a set of optional candidates by cross-validation or alternatively generated from the input data.

r-sphereml 0.1.1
Propagated dependencies: r-spheredata@0.1.3 r-shinydashboard@0.7.3 r-shinycssloaders@1.1.0 r-shiny@1.10.0 r-semplot@1.1.6 r-readxl@1.4.5 r-randomforest@4.7-1.2 r-proc@1.18.5 r-mirt@1.44.0 r-lavaan@0.6-19 r-ga@3.2.4 r-fselectorrcpp@0.3.13 r-ctt@2.3.3 r-catools@1.18.3 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/santosoph/sphereML
Licenses: Expat
Synopsis: Analyzing Students' Performance Dataset in Physics Education Research (SPHERE) using Machine Learning (ML)
Description:

This package provides a simple package facilitating ML based analysis for physics education research (PER) purposes. The implemented machine learning technique is random forest optimized by item response theory (IRT) for feature selection and genetic algorithm (GA) for hyperparameter tuning. The data analyzed here has been made available in the CRAN repository through the spheredata package. The SPHERE stands for Students Performance in Physics Education Research (PER). The students are the eleventh graders learning physics at the high school curriculum. We follow the stream of multidimensional students assessment as probed by some research based assessments in PER. The goal is to predict the students performance at the end of the learning process. Three learning domains are measured including conceptual understanding, scientific ability, and scientific attitude. Furthermore, demographic backgrounds and potential variables predicting students performance on physics are also demonstrated.

r-traminer 2.2-11
Propagated dependencies: r-vegan@2.6-10 r-rcolorbrewer@1.1-3 r-colorspace@2.1-1 r-cluster@2.1.8.1 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: http://traminer.unige.ch
Licenses: GPL 2+
Synopsis: Trajectory Miner: a Sequence Analysis Toolkit
Description:

Set of sequence analysis tools for manipulating, describing and rendering categorical sequences, and more generally mining sequence data in the field of social sciences. Although this sequence analysis package is primarily intended for state or event sequences that describe time use or life courses such as family formation histories or professional careers, its features also apply to many other kinds of categorical sequence data. It accepts many different sequence representations as input and provides tools for converting sequences from one format to another. It offers several functions for describing and rendering sequences, for computing distances between sequences with different metrics (among which optimal matching), original dissimilarity-based analysis tools, and functions for extracting the most frequent event subsequences and identifying the most discriminating ones among them. A user's guide can be found on the TraMineR web page.

r-collapse 2.1.1
Propagated dependencies: r-rcpp@1.0.14
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://sebkrantz.github.io/collapse/
Licenses: GPL 2+
Synopsis: Advanced and fast data transformation
Description:

This is a C/C++ based package for advanced data transformation and statistical computing in R that is extremely fast, class-agnostic, robust and programmer friendly. Core functionality includes a rich set of S3 generic grouped and weighted statistical functions for vectors, matrices and data frames, which provide efficient low-level vectorizations, OpenMP multithreading, and skip missing values by default. These are integrated with fast grouping and ordering algorithms (also callable from C), and efficient data manipulation functions. The package also provides a flexible and rigorous approach to time series and panel data in R. It further includes fast functions for common statistical procedures, detailed (grouped, weighted) summary statistics, powerful tools to work with nested data, fast data object conversions, functions for memory efficient R programming, and helpers to effectively deal with variable labels, attributes, and missing data.

r-casebase 0.10.6
Propagated dependencies: r-vgam@1.1-13 r-survival@3.8-3 r-mgcv@1.9-3 r-ggplot2@3.5.2 r-data-table@1.17.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://sahirbhatnagar.com/casebase/
Licenses: Expat
Synopsis: Fitting Flexible Smooth-in-Time Hazards and Risk Functions via Logistic and Multinomial Regression
Description:

Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.

r-weakarma 1.0.3
Propagated dependencies: r-vars@1.6-1 r-matrixstats@1.5.0 r-mass@7.3-65 r-compquadform@1.4.3
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://plmlab.math.cnrs.fr/jrolland/weakARMA
Licenses: GPL 3+
Synopsis: Tools for the Analysis of Weak ARMA Models
Description:

Numerous time series admit autoregressive moving average (ARMA) representations, in which the errors are uncorrelated but not necessarily independent. These models are called weak ARMA by opposition to the standard ARMA models, also called strong ARMA models, in which the error terms are supposed to be independent and identically distributed (iid). This package allows the study of nonlinear time series models through weak ARMA representations. It determines identification, estimation and validation for ARMA models and for AR and MA models in particular. Functions can also be used in the strong case. This package also works on white noises by omitting arguments p', q', ar and ma'. See Francq, C. and Zakoïan, J. (1998) <doi:10.1016/S0378-3758(97)00139-0> and Boubacar Maïnassara, Y. and Saussereau, B. (2018) <doi:10.1080/01621459.2017.1380030> for more details.

r-clustcr2 1.7.3.01
Propagated dependencies: r-vlf@1.1-3 r-stringr@1.5.1 r-sna@2.8 r-scales@1.4.0 r-rcolorbrewer@1.1-3 r-plyr@1.8.9 r-network@1.19.0 r-ggseqlogo@0.2 r-ggplot2@3.5.2 r-desctools@0.99.60
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ClusTCR2
Licenses: GPL 3+
Synopsis: Identifying Similar T Cell Receptor Hyper-Variable Sequences with 'ClusTCR2'
Description:

Enhancing T cell receptor (TCR) sequence analysis, ClusTCR2', based on ClusTCR python program, leverages Hamming distance to compare the complement-determining region three (CDR3) sequences for sequence similarity, variable gene (V gene) and length. The second step employs the Markov Cluster Algorithm to identify clusters within an undirected graph, providing a summary of amino acid motifs and matrix for generating network plots. Tailored for single-cell RNA-seq data with integrated TCR-seq information, ClusTCR2 is integrated into the Single Cell TCR and Expression Grouped Ontologies (STEGO) R application or STEGO.R'. See the two publications for more details. Sebastiaan Valkiers, Max Van Houcke, Kris Laukens, Pieter Meysman (2021) <doi:10.1093/bioinformatics/btab446>, Kerry A. Mullan, My Ha, Sebastiaan Valkiers, Nicky de Vrij, Benson Ogunjimi, Kris Laukens, Pieter Meysman (2023) <doi:10.1101/2023.09.27.559702>.

r-dynclust 3.24
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DynClust
Licenses: Expat
Synopsis: Denoising and Clustering for Dynamical Image Sequence (2D or 3D)+t
Description:

This package provides a two-stage procedure for the denoising and clustering of stack of noisy images acquired over time. Clustering only assumes that the data contain an unknown but small number of dynamic features. The method first denoises the signals using local spatial and full temporal information. The clustering step uses the previous output to aggregate voxels based on the knowledge of their spatial neighborhood. Both steps use a single keytool based on the statistical comparison of the difference of two signals with the null signal. No assumption is therefore required on the shape of the signals. The data are assumed to be normally distributed (or at least follow a symmetric distribution) with a known constant variance. Working pixelwise, the method can be time-consuming depending on the size of the data-array but harnesses the power of multicore cpus.

r-dqtg-seq 1.0.2
Propagated dependencies: r-writexl@1.5.4 r-vroom@1.6.5 r-stringr@1.5.1 r-qtl@1.70 r-openxlsx@4.2.8 r-foreach@1.5.2 r-doparallel@1.0.17 r-data-table@1.17.2 r-bb@2019.10-1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=dQTG.seq
Licenses: GPL 2+
Synopsis: BSA Software for Detecting All Types of QTLs in BC, DH, RIL and F2
Description:

The new (dQTG.seq1 and dQTG.seq2) and existing (SmoothLOD, G', deltaSNP and ED) bulked segregant analysis methods are used to identify various types of quantitative trait loci for complex traits via extreme phenotype individuals in bi-parental segregation populations (F2, backcross, doubled haploid and recombinant inbred line). The numbers of marker alleles in extreme low and high pools are used in existing methods to identify trait-related genes, while the numbers of marker alleles and genotypes in extreme low and high pools are used in the new methods to construct a new statistic Gw for identifying trait-related genes. dQTG-seq2 is feasible to identify extremely over-dominant and small-effect genes in F2. Li P, Li G, Zhang YW, Zuo JF, Liu JY, Zhang YM (2022, <doi: 10.1016/j.xplc.2022.100319>).

r-hdxboxer 0.0.2
Propagated dependencies: r-wrapr@2.1.0 r-tidyr@1.3.1 r-stringr@1.5.1 r-rcolorbrewer@1.1-3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HDXBoxeR
Licenses: GPL 2+
Synopsis: Analysis of Hydrogen-Deuterium Exchange Mass-Spectrometry Data
Description:

This package provides a protocol that facilitates the processing and analysis of Hydrogen-Deuterium Exchange Mass Spectrometry data using p-value statistics and Critical Interval analysis. It provides a pipeline for analyzing data from HDXExaminer (Sierra Analytics, Trajan Scientific), automating matching and comparison of protein states through Welch's T-test and the Critical Interval statistical framework. Additionally, it simplifies data export, generates PyMol scripts, and ensures calculations meet publication standards. HDXBoxeR assists in various aspects of hydrogen-deuterium exchange data analysis, including reprocessing data, calculating parameters, identifying significant peptides, generating plots, and facilitating comparison between protein states. For details check papers by Hageman and Weis (2019) <doi:10.1021/acs.analchem.9b01325> and Masson et al. (2019) <doi:10.1038/s41592-019-0459-y>. HDXBoxeR citation: Janowska et al. (2024) <doi:10.1093/bioinformatics/btae479>.

r-lingdist 1.0
Propagated dependencies: r-rcppthread@2.2.0 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/fncokg/lingdist
Licenses: GPL 2+
Synopsis: Fast Linguistic Distance and Alignment Computation
Description:

This package provides a fast generalized edit distance and string alignment computation mainly for linguistic aims. As a generalization to the classic edit distance algorithms, the package allows users to define custom cost for every symbol's insertion, deletion, and substitution. The package also allows character combinations in any length to be seen as a single symbol which is very useful for International Phonetic Alphabet (IPA) transcriptions with diacritics. In addition to edit distance result, users can get detailed alignment information such as all possible alignment scenarios between two strings which is useful for testing, illustration or any further usage. Either the distance matrix or its long table form can be obtained and tools to do such conversions are provided. All functions in the package are implemented in C++ and the distance matrix computation is parallelized leveraging the RcppThread package.

r-musicxml 1.0.1
Propagated dependencies: r-xml2@1.3.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=musicXML
Licenses: GPL 3
Synopsis: Data Sonification using 'musicXML'
Description:

This package provides a set of tools to facilitate data sonification and handle the musicXML format <https://usermanuals.musicxml.com/MusicXML/Content/XS-MusicXML.htm>. Several classes are defined for basic musical objects such as note pitch, note duration, note, measure and score. Moreover, sonification utilities functions are provided, e.g. to map data into musical attributes such as pitch, loudness or duration. A typical sonification workflow hence looks like: get data; map them to musical attributes; create and write the musicXML score, which can then be further processed using specialized music software (e.g. MuseScore', GuitarPro', etc.). Examples can be found in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).

r-sysagnps 1.0.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.6 r-rio@1.2.3 r-rcolorbrewer@1.1-3 r-purrr@1.0.4 r-patchwork@1.3.0 r-magrittr@2.0.3 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-forcats@1.0.0 r-expm@1.0-0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/xitingwang-ida/sysAgNPs
Licenses: GPL 3+
Synopsis: Systematic Quantification of AgNPs to Unleash their Potential for Applicability
Description:

There is variation across AgNPs due to differences in characterization techniques and testing metrics employed in studies. To address this problem, we have developed a systematic evaluation framework called sysAgNPs'. Within this framework, Distribution Entropy (DE) is utilized to measure the uncertainty of feature categories of AgNPs, Proclivity Entropy (PE) assesses the preference of these categories, and Combination Entropy (CE) quantifies the uncertainty of feature combinations of AgNPs. Additionally, a Markov chain model is employed to examine the relationships among the sub-features of AgNPs and to determine a Transition Score (TS) scoring standard that is based on steady-state probabilities. The sysAgNPs framework provides metrics for evaluating AgNPs, which helps to unravel their complexity and facilitates effective comparisons among different AgNPs, thereby advancing the scientific research and application of these AgNPs.

r-mapscape 1.32.0
Propagated dependencies: r-stringr@1.5.1 r-jsonlite@2.0.0 r-htmlwidgets@1.6.4 r-base64enc@0.1-3
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://bioconductor.org/packages/mapscape
Licenses: GPL 3
Synopsis: mapscape
Description:

MapScape integrates clonal prevalence, clonal hierarchy, anatomic and mutational information to provide interactive visualization of spatial clonal evolution. There are four inputs to MapScape: (i) the clonal phylogeny, (ii) clonal prevalences, (iii) an image reference, which may be a medical image or drawing and (iv) pixel locations for each sample on the referenced image. Optionally, MapScape can accept a data table of mutations for each clone and their variant allele frequencies in each sample. The output of MapScape consists of a cropped anatomical image surrounded by two representations of each tumour sample. The first, a cellular aggregate, visually displays the prevalence of each clone. The second shows a skeleton of the clonal phylogeny while highlighting only those clones present in the sample. Together, these representations enable the analyst to visualize the distribution of clones throughout anatomic space.

r-scan-upc 2.50.0
Propagated dependencies: r-sva@3.56.0 r-oligo@1.72.0 r-mass@7.3-65 r-iranges@2.42.0 r-geoquery@2.76.0 r-foreach@1.5.2 r-biostrings@2.76.0 r-biobase@2.68.0 r-affyio@1.78.0 r-affy@1.86.0
Channel: guix-bioc
Location: guix-bioc/packages/s.scm (guix-bioc packages s)
Home page: http://bioconductor.org
Licenses: Expat
Synopsis: Single-channel array normalization (SCAN) and Universal exPression Codes (UPC)
Description:

SCAN is a microarray normalization method to facilitate personalized-medicine workflows. Rather than processing microarray samples as groups, which can introduce biases and present logistical challenges, SCAN normalizes each sample individually by modeling and removing probe- and array-specific background noise using only data from within each array. SCAN can be applied to one-channel (e.g., Affymetrix) or two-channel (e.g., Agilent) microarrays. The Universal exPression Codes (UPC) method is an extension of SCAN that estimates whether a given gene/transcript is active above background levels in a given sample. The UPC method can be applied to one-channel or two-channel microarrays as well as to RNA-Seq read counts. Because UPC values are represented on the same scale and have an identical interpretation for each platform, they can be used for cross-platform data integration.

r-lgspline 0.2.0
Propagated dependencies: r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-rcolorbrewer@1.1-3 r-quadprog@1.5-8 r-plotly@4.10.4 r-fnn@1.1.4.1
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/matthewlouisdavisBioStat/lgspline
Licenses: Expat
Synopsis: Lagrangian Multiplier Smoothing Splines for Smooth Function Estimation
Description:

This package implements Lagrangian multiplier smoothing splines for flexible nonparametric regression and function estimation. Provides tools for fitting, prediction, and inference using a constrained optimization approach to enforce smoothness. Supports generalized linear models, Weibull accelerated failure time (AFT) models, quadratic programming problems, and customizable arbitrary correlation structures. Options for fitting in parallel are provided. The method builds upon the framework described by Ezhov et al. (2018) <doi:10.1515/jag-2017-0029> using Lagrangian multipliers to fit cubic splines. For more information on correlation structure estimation, see Searle et al. (2009) <ISBN:978-0470009598>. For quadratic programming and constrained optimization in general, see Nocedal & Wright (2006) <doi:10.1007/978-0-387-40065-5>. For a comprehensive background on smoothing splines, see Wahba (1990) <doi:10.1137/1.9781611970128> and Wood (2006) <ISBN:978-1584884743> "Generalized Additive Models: An Introduction with R".

r-multpois 0.3.3
Propagated dependencies: r-plyr@1.8.9 r-lme4@1.1-37 r-dplyr@1.1.4 r-dfidx@0.1-0 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/wobbrock/multpois/
Licenses: GPL 2+
Synopsis: Analyze Nominal Response Data with the Multinomial-Poisson Trick
Description:

Dichotomous responses having two categories can be analyzed with stats::glm() or lme4::glmer() using the family=binomial option. Unfortunately, polytomous responses with three or more unordered categories cannot be analyzed similarly because there is no analogous family=multinomial option. For between-subjects data, nnet::multinom() can address this need, but it cannot handle random factors and therefore cannot handle repeated measures. To address this gap, we transform nominal response data into counts for each categorical alternative. These counts are then analyzed using (mixed) Poisson regression as per Baker (1994) <doi:10.2307/2348134>. Omnibus analyses of variance can be run along with post hoc pairwise comparisons. For users wishing to analyze nominal responses from surveys or experiments, the functions in this package essentially act as though stats::glm() or lme4::glmer() provide a family=multinomial option.

r-multimix 1.0-10
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/jmcurran/multimix
Licenses: GPL 2+
Synopsis: Fit Mixture Models Using the Expectation Maximisation (EM) Algorithm
Description:

This package provides a set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1--22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153--171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429--440.

r-adimpute 1.18.0
Propagated dependencies: r-biocparallel@1.42.0 r-checkmate@2.3.2 r-data-table@1.17.2 r-drimpute@1.0 r-kernlab@0.9-33 r-mass@7.3-65 r-matrix@1.7-3 r-rsvd@1.0.5 r-s4vectors@0.46.0 r-saver@1.1.2 r-singlecellexperiment@1.30.1 r-summarizedexperiment@1.38.1
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://bioconductor.org/packages/ADImpute
Licenses: GPL 3+
Synopsis: Adaptive computational prediction for dropout imputations
Description:

Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (dropout imputation). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. The ADImpute package proposes two methods to address this issue:

  1. a gene regulatory network-based approach using gene-gene relationships learnt from external data;

  2. a baseline approach corresponding to a sample-wide average.

ADImpute implements these novel methods and also combines them with existing imputation methods like DrImpute and SAVER. ADImpute can learn the best performing method per gene and combine the results from different methods into an ensemble.

r-emulator 1.2-24
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/RobinHankin/emulator
Licenses: GPL 2+ GPL 3+
Synopsis: Bayesian emulation of computer programs
Description:

This package allows one to estimate the output of a computer program, as a function of the input parameters, without actually running it. The computer program is assumed to be a Gaussian process, whose parameters are estimated using Bayesian techniques that give a PDF of expected program output. This PDF is conditional on a training set of runs, each consisting of a point in parameter space and the model output at that point. The emphasis is on complex codes that take weeks or months to run, and that have a large number of undetermined input parameters; many climate prediction models fall into this class. The emulator essentially determines Bayesian posterior estimates of the PDF of the output of a model, conditioned on results from previous runs and a user-specified prior linear model. The package includes functionality to evaluate quadratic forms efficiently.

r-cbamodel 0.0.1.2
Propagated dependencies: r-pracma@2.4.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CBAModel
Licenses: GPL 3+
Synopsis: Stochastic 3D Structure Model for Binder-Conductive Additive Phase
Description:

Simulation of the stochastic 3D structure model for the nanoporous binder-conductive additive phase in battery cathodes introduced in P. Gräfensteiner, M. Osenberg, A. Hilger, N. Bohn, J. R. Binder, I. Manke, V. Schmidt, M. Neumann (2024) <doi:10.48550/arXiv.2409.11080>. The model is developed for a binder-conductive additive phase of consisting of carbon black, polyvinylidene difluoride binder and graphite particles. For its stochastic 3D modeling, a three-step procedure based on methods from stochastic geometry is used. First, the graphite particles are described by a Boolean model with ellipsoidal grains. Second, the mixture of carbon black and binder is modeled by an excursion set of a Gaussian random field in the complement of the graphite particles. Third, large pore regions within the mixture of carbon black and binder are described by a Boolean model with spherical grains.

r-facmodcs 1.0
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-tseries@0.10-58 r-sn@2.1.1 r-robustbase@0.99-4-1 r-robstattm@1.0.11 r-performanceanalytics@2.0.8 r-lattice@0.22-7 r-data-table@1.17.2
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/robustport/facmodCS
Licenses: GPL 2
Synopsis: Cross-Section Factor Models
Description:

Linear cross-section factor model fitting with least-squares and robust fitting the lmrobdetMM() function from RobStatTM'; related volatility, Value at Risk and Expected Shortfall risk and performance attribution (factor-contributed vs idiosyncratic returns); tabular displays of risk and performance reports; factor model Monte Carlo. The package authors would like to thank Chicago Research on Security Prices,LLC for the cross-section of about 300 CRSP stocks data (in the data.table object stocksCRSP', and S&P GLOBAL MARKET INTELLIGENCE for contributing 14 factor scores (a.k.a "alpha factors".and "factor exposures") fundamental data on the 300 companies in the data.table object factorSPGMI'. The stocksCRSP and factorsSPGMI data are not covered by the GPL-2 license, are not provided as open source of any kind, and they are not to be redistributed in any form.

r-textrank 0.3.1
Propagated dependencies: r-igraph@2.1.4 r-digest@0.6.37 r-data-table@1.17.2
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/bnosac/textrank
Licenses: FSDG-compatible
Synopsis: Summarize Text by Ranking Sentences and Finding Keywords
Description:

The textrank algorithm is an extension of the Pagerank algorithm for text. The algorithm allows to summarize text by calculating how sentences are related to one another. This is done by looking at overlapping terminology used in sentences in order to set up links between sentences. The resulting sentence network is next plugged into the Pagerank algorithm which identifies the most important sentences in your text and ranks them. In a similar way textrank can also be used to extract keywords. A word network is constructed by looking if words are following one another. On top of that network the Pagerank algorithm is applied to extract relevant words after which relevant words which are following one another are combined to get keywords. More information can be found in the paper from Mihalcea, Rada & Tarau, Paul (2004) <https://www.aclweb.org/anthology/W04-3252/>.

r-tidycomm 0.4.1
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-purrr@1.0.4 r-pillar@1.10.2 r-misty@0.7.2 r-mbess@4.9.3 r-mass@7.3-65 r-magrittr@2.0.3 r-lubridate@1.9.4 r-lm-beta@1.7-2 r-glue@1.8.0 r-ggplot2@3.5.2 r-ggally@2.2.1 r-forcats@1.0.0 r-fastdummies@1.7.5 r-dplyr@1.1.4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://joon-e.github.io/tidycomm/
Licenses: GPL 3
Synopsis: Data Modification and Analysis for Communication Research
Description:

This package provides convenience functions for common data modification and analysis tasks in communication research. This includes functions for univariate and bivariate data analysis, index generation and reliability computation, and intercoder reliability tests. All functions follow the style and syntax of the tidyverse, and are construed to perform their computations on multiple variables at once. Functions for univariate and bivariate data analysis comprise summary statistics for continuous and categorical variables, as well as several tests of bivariate association including effect sizes. Functions for data modification comprise index generation and automated reliability analysis of index variables. Functions for intercoder reliability comprise tests of several intercoder reliability estimates, including simple and mean pairwise percent agreement, Krippendorff's Alpha (Krippendorff 2004, ISBN: 9780761915454), and various Kappa coefficients (Brennan & Prediger 1981 <doi: 10.1177/001316448104100307>; Cohen 1960 <doi: 10.1177/001316446002000104>; Fleiss 1971 <doi: 10.1037/h0031619>).

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
Total results: 36659