Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simple feature stores and tools for creating personalised feature stores. diseasystore powers feature stores which can automatically link and aggregate features to a given stratification level. These feature stores are automatically time-versioned (powered by the SCDB package) and allows you to easily and dynamically compute features as part of your continuous integration.
This package provides a framework for creating production outputs. Users can frame a table, listing, or figure with headers and footers and save to an output file. Stores an intermediate docorator object for reproducibility and rendering to multiple output types.
While autoregressive distributed lag (ARDL) models allow for extremely flexible dynamics, interpreting substantive significance of complex lag structures remains difficult. This package is designed to assist users in dynamically simulating and plotting the results of various ARDL models. It also contains post-estimation diagnostics, including a test for cointegration when estimating the error-correction variant of the autoregressive distributed lag model (Pesaran, Shin, and Smith 2001 <doi:10.1002/jae.616>).
Several functions are provided for dose-response (or concentration-response) characterization from omics data. DRomics is especially dedicated to omics data obtained using a typical dose-response design, favoring a great number of tested doses (or concentrations) rather than a great number of replicates (no need of replicates). DRomics provides functions 1) to check, normalize and or transform data, 2) to select monotonic or biphasic significantly responding items (e.g. probes, metabolites), 3) to choose the best-fit model among a predefined family of monotonic and biphasic models to describe each selected item, 4) to derive a benchmark dose or concentration and a typology of response from each fitted curve. In the available version data are supposed to be single-channel microarray data in log2, RNAseq data in raw counts, or already pretreated continuous omics data (such as metabolomic data) in log scale. In order to link responses across biological levels based on a common method, DRomics also handles apical data as long as they are continuous and follow a normal distribution for each dose or concentration, with a common standard error. For further details see Delignette-Muller et al (2023) <DOI:10.24072/pcjournal.325> and Larras et al (2018) <DOI:10.1021/acs.est.8b04752>.
Here, a function has been developed to generate parameters of the input designs, as well as incidence matrices. This is a general function that can be used to investigate the characterization properties of any block design.
Statistical hypothesis testing using the Delta method as proposed by Deng et al. (2018) <doi:10.1145/3219819.3219919>. This method replaces the standard variance estimation formula in the Z-test with an approximate formula derived via the Delta method, which can account for within-user correlation.
Distributional instrumental variable (DIV) model for estimation of the interventional distribution of the outcome Y under a do intervention on the treatment X. Instruments, predictors and targets can be univariate or multivariate. Functionality includes estimation of the (conditional) interventional mean and quantiles, as well as sampling from the fitted (conditional) interventional distribution.
Dynamic stochastic block model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time, developed in Matias and Miele (2016) <doi:10.1111/rssb.12200>.
Fast distributed/parallel estimation for multinomial logistic regression via Poisson factorization and the gamlr package. For details see: Taddy (2015, AoAS), Distributed Multinomial Regression, <doi:10.48550/arXiv.1311.6139>.
Small toolbox for data analyses in environmental chemistry and ecotoxicology. Provides, for example, calibration() to calculate calibration curves and corresponding limits of detection (LODs) and limits of quantification (LOQs) according to German DIN 32645 (2008). texture() makes it easy to estimate soil particle size distributions from hydrometer measurements (ASTM D422-63, 2007).
Perform dynamic model averaging with grid search as in Dangl and Halling (2012) <doi:10.1016/j.jfineco.2012.04.003> using parallel computing.
We quantitatively evaluated the assertion that says if one suit is found to be evenly distributed among the 4 players, the rest of the suits are more likely to be evenly distributed. Our mathematical analyses show that, if one suit is found to be evenly distributed, then a second suit has a slightly elevated probability (ranging between 10% to 15%) of being evenly distributed. If two suits are found to be evenly distributed, then a third suit has a substantially elevated probability (ranging between 30% to 50%) of being evenly distributed.This package refers to methods and authentic data from Ely Culbertson <https://www.bridgebum.com/law_of_symmetry.php>, Gregory Stoll <https://gregstoll.com/~gregstoll/bridge/math.html>, and details of performing the probability calculations from Jeremy L. Martin <https://jlmartin.ku.edu/~jlmartin/bridge/basics.pdf>, Emile Borel and Andre Cheron (1954) "The Mathematical Theory of Bridge",Antonio Vivaldi and Gianni Barracho (2001, ISBN:0 7134 8663 5) "Probabilities and Alternatives in Bridge", Ken Monzingo (2005) "Hand and Suit Patterns" <http://web2.acbl.org/documentlibrary/teachers/celebritylessons/handpatternsrevised.pdf>Ken Monzingo (2005) "Hand and Suit Patterns" <http://web2.acbl.org/documentlibrary/teachers/celebritylessons/handpatternsrevised.pdf>.
This package provides a tool for conducting exact parametric regression-based causal mediation analysis of binary outcomes as described in Samoilenko, Blais and Lefebvre (2018) <doi:10.1353/obs.2018.0013>; Samoilenko, Lefebvre (2021) <doi:10.1093/aje/kwab055>; and Samoilenko, Lefebvre (2023) <doi:10.1002/sim.9621>.
Analyzes and quantifies ecosystem multifunctionality with functions to calculate multifunctionality richness (MFric), multifunctionality divergence (MFdiv), and multifunctionality regularity (MFreg). These indices help assess the relationship between biodiversity and multiple ecosystem functions. For more details, see Byrnes et al. (2014) <doi:10.1111/2041-210X.12143> and Chao et al. (2024) <doi:10.1111/ele.14336>.
Extra strength glue for data-driven templates. String interpolation for Shiny apps or R Markdown and knitr'-powered Quarto documents, built on the glue and whisker packages.
This package provides a non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.
The summation notation suggested by Einstein (1916) <doi:10.1002/andp.19163540702> is a concise mathematical notation that implicitly sums over repeated indices of n-dimensional arrays. Many ordinary matrix operations (e.g. transpose, matrix multiplication, scalar product, diag()', trace etc.) can be written using Einstein notation. The notation is particularly convenient for expressing operations on arrays with more than two dimensions because the respective operators ('tensor products') might not have a standardized name.
This package implements the conditional estimation procedure of Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of a normal random vector subject to linear constraints.
Evaluates the performance of binary classifiers. Computes confusion measures (TP, TN, FP, FN), derived measures (TPR, FDR, accuracy, F1, DOR, ..), and area under the curve. Outputs are well suited for nested dataframes.
Description: Application of empirical mode decomposition based support vector regression model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <http://krishi.icar.gov.in/jspui/handle/123456789/44873>; (ii) Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/43174>; (iii) Das (2023) <http://krishi.icar.gov.in/jspui/handle/123456789/77772>.
Inspect survival data, plot Kaplan-Meier curves, assess the proportional hazards assumption, fit parametric survival models, predict and plot survival and hazards, and export the outputs to Excel'. A simple interface for fitting survival models using flexsurv::flexsurvreg(), flexsurv::flexsurvspline(), flexsurvcure::flexsurvcure(), and survival::survreg().
Package for analysis of simple experimental designs (CRD, RBD and LSD), experiments in double factorial schemes (in CRD and RBD), experiments in a split plot in time schemes (in CRD and RBD), experiments in double factorial schemes with an additional treatment (in CRD and RBD), experiments in triple factorial scheme (in CRD and RBD) and experiments in triple factorial schemes with an additional treatment (in CRD and RBD), performing the analysis of variance and means comparison by fitting regression models until the third power (quantitative treatments) or by a multiple comparison test, Tukey test, test of Student-Newman-Keuls (SNK), Scott-Knott, Duncan test, t test (LSD) and Bonferroni t test (protected LSD) - for qualitative treatments; residual analysis (Ferreira, Cavalcanti and Nogueira, 2014) <doi:10.4236/am.2014.519280>.
Computes shrinkage estimators for regression problems. Selects penalty parameter by minimizing bias and variance in the effect estimate, where bias and variance are estimated from the posterior predictive distribution. See Keller and Rice (2017) <doi:10.1093/aje/kwx225> for more details.
This package provides a rich toolkit of using the whole building simulation program EnergyPlus'(<https://energyplus.net>), which enables programmatic navigation, modification of EnergyPlus models and makes it less painful to do parametric simulations and analysis.