Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.
Evaluates the empirical characteristic function of univariate and multivariate samples. This package uses RcppArmadillo for fast evaluation. It is also possible to export the code to be used in other packages at C++ level.
This package provides classes and methods for implementing aquatic ecosystem models, for running these models, and for visualizing their results.
Prints out information about the R working environment (system, R version,loaded and attached packages and versions) from a single function "env_doc()". Optionally adds information on git repository, tags, commits and remotes (if available).
Computes the expectation of the number of transmissions and receptions considering an End-to-End transport model with limited number of retransmissions per packet. It provides theoretical results and also estimated values based on Monte Carlo simulations. It is also possible to consider random data and ACK probabilities.
This package contains methods for observed-score linking and equating under the single-group, equivalent-groups, and nonequivalent-groups with anchor test(s) designs. Equating types include identity, mean, linear, general linear, equipercentile, circle-arc, and composites of these. Equating methods include synthetic, nominal weights, Tucker, Levine observed score, Levine true score, Braun/Holland, frequency estimation, and chained equating. Plotting and summary methods, and methods for multivariate presmoothing and bootstrap error estimation are also provided.
Utilities for managing egocentrically sampled network data and a wrapper around the ergm package to facilitate ERGM inference and simulation from such data. See Krivitsky and Morris (2017) <doi:10.1214/16-AOAS1010>.
Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) <doi:10.48550/arXiv.0711.1146>. for details on the model.
This package provides a collection of advanced tools, methods and models specifically designed for analyzing different types of ecological networks - especially antagonistic (food webs, host-parasite), mutualistic (plant-pollinator, plant-fungus, etc) and competitive networks, as well as their variability in time and space. Statistical models are developed to describe and understand the mechanisms that determine species interactions, and to decipher the organization of these ecological networks (Ohlmann et al. (2019) <doi:10.1111/ele.13221>, Gonzalez et al. (2020) <doi:10.1101/2020.04.02.021691>, Miele et al. (2021) <doi:10.48550/arXiv.2103.10433>, Botella et al (2021) <doi:10.1111/2041-210X.13738>).
Collection of R functions and data sets for the support of spatial ecology analyses with a focus on pre, core and post modelling analyses of species distribution, niche quantification and community assembly. Written by current and former members and collaborators of the ecospat group of Antoine Guisan, Department of Ecology and Evolution (DEE) and Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Switzerland. Read Di Cola et al. (2016) <doi:10.1111/ecog.02671> for details.
Extracting desired data using the proper Census variable names can be time-consuming. This package takes the pain out of that process by providing functions to quickly locate variables and download labeled tables from the Census APIs (<https://www.census.gov/data/developers/data-sets.html>).
Providing easy, portable access to NASA EarthData products through the use of bearer tokens. Much of NASA's public data catalogs hosted and maintained by its 12 Distributed Active Archive Centers ('DAACs') are now made available on the Amazon Web Services S3 storage. However, accessing this data through the standard S3 API is restricted to only to compute resources running inside us-west-2 Data Center in Portland, Oregon, which allows NASA to avoid being charged data egress rates. This package provides public access to the data from any networked device by using the EarthData login application programming interface (API), <https://www.earthdata.nasa.gov/data/earthdata-login>, providing convenient authentication and access to cloud-hosted NASA EarthData products. This makes access to a wide range of earth observation data from any location straight forward and compatible with R packages that are widely used with cloud native earth observation data (such as terra', sf', etc.).
Provide the EMU Speech Database Management System (EMU-SDMS) with database management, data extraction, data preparation and data visualization facilities. See <https://ips-lmu.github.io/The-EMU-SDMS-Manual/> for more details.
Simulation-based evidence accumulation models for analyzing responses and reaction times in single- and multi-response tasks. The package includes simulation engines for five representative models: the Diffusion Decision Model (DDM), Leaky Competing Accumulator (LCA), Linear Ballistic Accumulator (LBA), Racing Diffusion Model (RDM), and Levy Flight Model (LFM), and extends these frameworks to multi-response settings. The package supports user-defined functions for item-level parameterization and the incorporation of covariates, enabling flexible customization and the development of new model variants based on existing architectures. Inference is performed using simulation-based methods, including Approximate Bayesian Computation (ABC) and Amortized Bayesian Inference (ABI), which allow parameter estimation without requiring tractable likelihood functions. In addition to core inference tools, the package provides modules for parameter recovery, posterior predictive checks, and model comparison, facilitating the study of a wide range of cognitive processes in tasks involving perceptual decision making, memory retrieval, and value-based decision making. Key methods implemented in the package are described in Ratcliff (1978) <doi:10.1037/0033-295X.85.2.59>, Usher and McClelland (2001) <doi:10.1037/0033-295X.108.3.550>, Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>, Tillman, Van Zandt and Logan (2020) <doi:10.3758/s13423-020-01719-6>, Wieschen, Voss and Radev (2020) <doi:10.20982/tqmp.16.2.p120>, Csilléry, François and Blum (2012) <doi:10.1111/j.2041-210X.2011.00179.x>, Beaumont (2019) <doi:10.1146/annurev-statistics-030718-105212>, and Sainsbury-Dale, Zammit-Mangion and Huser (2024) <doi:10.1080/00031305.2023.2249522>.
Power analysis is used in the estimation of sample sizes for experimental designs. Most programs and R packages will only output the highest recommended sample size to the user. Often the user input can be complicated and computing multiple power analyses for different treatment comparisons can be time consuming. This package simplifies the user input and allows the user to view all of the sample size recommendations or just the ones they want to see. The calculations used to calculate the recommended sample sizes are from the pwr package.
This package implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA estimates the number of dimensions in psychological data using network estimation methods and community detection algorithms. A bootstrap method is provided to assess the stability of dimensions and items. Fit is evaluated using the Entropy Fit family of indices. Unique Variable Analysis evaluates the extent to which items are locally dependent (or redundant). Network loadings provide similar information to factor loadings and can be used to compute network scores. A bootstrap and permutation approach are available to assess configural and metric invariance. Hierarchical structures can be detected using Hierarchical EGA. Time series and intensive longitudinal data can be analyzed using Dynamic EGA, supporting individual, group, and population level assessments.
This package provides methods for data analysis from an entropic perspective. These methods are nonparametric and perform well on non-ordinal data. Currently includes HeatMap() for visualizing distributional characteristics among multiple populations (groups).
Functions, data sets and shiny apps for "Epidemics: Models and Data in R" by Ottar N. Bjornstad (ISBN 978-3-319-97487-3) <https://www.springer.com/gp/book/9783319974866>. The package contains functions to study the S(E)IR model, spatial and age-structured SIR models; time-series SIR and chain-binomial stochastic models; catalytic disease models; coupled map lattice models of spatial transmission and network models for social spread of infection. The package is also an advanced quantitative companion to the coursera Epidemics Massive Online Open Course <https://www.coursera.org/learn/epidemics>.
This package provides methods to deal with the free antiassociative algebra over the reals with an arbitrary number of indeterminates. Antiassociativity means that (xy)z = -x(yz). Antiassociative algebras are nilpotent with nilindex four (Remm, 2022, <doi:10.48550/arXiv.2202.10812>) and this drives the design and philosophy of the package. Methods are defined to create and manipulate arbitrary elements of the antiassociative algebra, and to extract and replace coefficients. A vignette is provided.
Enables R users to run large language models locally using GGUF model files and the llama.cpp inference engine. Provides a complete R interface for loading models, generating text completions, and streaming responses in real-time. Supports local inference without requiring cloud APIs or internet connectivity, ensuring complete data privacy and control. Based on the llama.cpp project by Georgi Gerganov (2023) <https://github.com/ggml-org/llama.cpp>.
For multiple full/partial ranking lists, R package ExtMallows can (1) detect whether the input ranking lists are over-correlated, and (2) use the Mallows model or extended Mallows model to integrate the ranking lists, and (3) use hierarchical extended Mallows model for rank integration if there are groups of over-correlated ranking lists.
Package provides a set of tools for robust estimation and inference for probit model with endogenous covariates. The current version contains a robust two-step estimator. For technical details, see Naghi, Varadi and Zhelonkin (2022), <doi:10.1016/j.ecosta.2022.05.001>.
Given two samples of size n_1 and n_2 from a data set where each sample consists of K functional observations (channels), each recorded on T grid points, the function energy method implements a hypothesis test of equality of channel-wise mean at each channel using the bootstrapped distribution of maximum energy to control family wise error. The function energy_method_complex accomodates complex valued functional observations.
Support functions for R-based "EQUALencrypt - Encrypt and decrypt whole files" and "EQUALencrypt - Encrypt and decrypt columns of data" shiny applications which allow researchers without coding skills or expertise in encryption algorithms to share data after encryption. Gurusamy,K (2025)<doi:10.5281/zenodo.16743676> and Gurusamy,K (2025)<doi:10.5281/zenodo.16744058>.