_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-depigner 0.9.1
Propagated dependencies: r-usethis@3.1.0 r-tidyr@1.3.1 r-tibble@3.2.1 r-telegram-bot@3.0.0 r-stringr@1.5.1 r-rprojroot@2.0.4 r-rms@8.0-0 r-rlang@1.1.6 r-readr@2.1.5 r-purrr@1.0.4 r-progress@1.2.3 r-magrittr@2.0.3 r-hmisc@5.2-3 r-ggplot2@3.5.2 r-fs@1.6.6 r-dplyr@1.1.4 r-desc@1.4.3
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://corradolanera.github.io/depigner/
Licenses: GPL 3
Synopsis: Utility Package to Help you Deal with "Pignas"
Description:

Pigna [_pìn'n'a_] is the Italian word for pine cone. In jargon, it is used to identify a task which is boring, banal, annoying, painful, frustrating and maybe even with a not so beautiful or rewarding result, just like the obstinate act of trying to challenge yourself in extracting pine nuts from a pine cone, provided that, in the end, you will find at least one inside it. Here you can find a backpack of functions to be used to solve small everyday problems of coding or analyzing (clinical) data, which would be normally solved using quick-and-dirty patches. You will be able to convert Hmisc and rms summary()es into data.frames ready to be rendered by pander and knitr'. You can access easy-to-use wrappers to activate essential but useful progress bars (from progress') into your loops or functionals. Easy setup and control Telegram's bots (from telegram.bot') to send messages or to divert error messages to a Telegram's chat. You also have some utilities helping you in the development of packages, like the activation of the same user interface of usethis into your package, or call polite functions to ask a user to install other packages. Finally, you find a set of thematic sets of packages you may use to set up new environments quickly, installing them in a single call.

r-icompelm 0.1.0
Propagated dependencies: r-tsutils@0.9.4 r-ica@1.0-3
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=ICompELM
Licenses: GPL 3
Synopsis: Independent Component Analysis Based Extreme Learning Machine
Description:

Single Layer Feed-forward Neural networks (SLFNs) have many applications in various fields of statistical modelling, especially for time-series forecasting. However, there are some major disadvantages of training such networks via the widely accepted gradient-based backpropagation algorithm, such as convergence to local minima, dependencies on learning rate and large training time. These concerns were addressed by Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, wherein they introduced the Extreme Learning Machine (ELM), an extremely fast learning algorithm for SLFNs which randomly chooses the weights connecting input and hidden nodes and analytically determines the output weights of SLFNs. It shows good generalized performance, but is still subject to a high degree of randomness. To mitigate this issue, this package uses a dimensionality reduction technique given in Hyvarinen (1999) <doi:10.1109/72.761722>, namely, the Independent Component Analysis (ICA) to determine the input-hidden connections and thus, remove any sort of randomness from the algorithm. This leads to a robust, fast and stable ELM model. Using functions within this package, the proposed model can also be compared with an existing alternative based on the Principal Component Analysis (PCA) algorithm given by Pearson (1901) <doi:10.1080/14786440109462720>, i.e., the PCA based ELM model given by Castano et al. (2013) <doi:10.1007/s11063-012-9253-x>, from which the implemented ICA based algorithm is greatly inspired.

r-grouprar 0.1.0
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-gridextra@2.3 r-ggplot2@3.5.2 r-extradistr@1.10.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=grouprar
Licenses: GPL 2+
Synopsis: Group Response Adaptive Randomization for Clinical Trials
Description:

Implement group response-adaptive randomization procedures, which also integrates standard non-group response-adaptive randomization methods as specialized instances. It is also uniquely capable of managing complex scenarios, including those with delayed and missing responses, thereby expanding its utility in real-world applications. This package offers 16 functions for simulating a variety of response adaptive randomization procedures. These functions are essential for guiding the selection of statistical methods in clinical trials, providing a flexible and effective approach to trial design. Some of the detailed methodologies and algorithms used in this package, please refer to the following references: LJ Wei (1979) <doi:10.1214/aos/1176344614> L. J. WEI and S. DURHAM (1978) <doi:10.1080/01621459.1978.10480109> Durham, S. D., FlournoY, N. AND LI, W. (1998) <doi:10.2307/3315771> Ivanova, A., Rosenberger, W. F., Durham, S. D. and Flournoy, N. (2000) <https://www.jstor.org/stable/25053121> Bai Z D, Hu F, Shen L. (2002) <doi:10.1006/jmva.2001.1987> Ivanova, A. (2003) <doi:10.1007/s001840200220> Hu, F., & Zhang, L. X. (2004) <doi:10.1214/aos/1079120137> Hu, F., & Rosenberger, W. F. (2006, ISBN:978-0-471-65396-7). Zhang, L. X., Chan, W. S., Cheung, S. H., & Hu, F. (2007) <https://www.jstor.org/stable/26432528> Zhang, L., & Rosenberger, W. F. (2006) <doi:10.1111/j.1541-0420.2005.00496.x> Hu, F., Zhang, L. X., Cheung, S. H., & Chan, W. S. (2008) <doi:10.1002/cjs.5550360404>.

r-mirnaqcd 1.1.3
Propagated dependencies: r-qpdf@1.3.5 r-proc@1.18.5 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MiRNAQCD
Licenses: GPL 3
Synopsis: Micro-RNA Quality Control and Diagnosis
Description:

This package provides a complete and dedicated analytical toolbox for quality control and diagnosis based on subject-related measurements of micro-RNA (miRNA) expressions. The package consists of a set of functions that allow to train, optimize and use a Bayesian classifier that relies on multiplets of measured miRNA expressions. The package also implements the quality control tools required to preprocess input datasets. In addition, the package provides a function to carry out a statistical analysis of miRNA expressions, which can give insights to improve the classifier's performance. The method implemented in the package was first introduced in L. Ricci, V. Del Vescovo, C. Cantaloni, M. Grasso, M. Barbareschi and M. A. Denti, "Statistical analysis of a Bayesian classifier based on the expression of miRNAs", BMC Bioinformatics 16:287, 2015 <doi:10.1186/s12859-015-0715-9>. The package is thoroughly described in M. Castelluzzo, A. Perinelli, S. Detassis, M. A. Denti and L. Ricci, "MiRNA-QC-and-Diagnosis: An R package for diagnosis based on MiRNA expression", SoftwareX 12:100569, 2020 <doi:10.1016/j.softx.2020.100569>. Please cite both these works if you use the package for your analysis. DISCLAIMER: The software in this package is for general research purposes only and is thus provided WITHOUT ANY WARRANTY. It is NOT intended to form the basis of clinical decisions. Please refer to the GNU General Public License 3.0 (GPLv3) for further information.

r-netlogor 1.0.5
Propagated dependencies: r-terra@1.8-50 r-quickplot@1.0.2 r-data-table@1.17.2
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://netlogor.predictiveecology.org
Licenses: GPL 3
Synopsis: Build and Run Spatially Explicit Agent-Based Models
Description:

Build and run spatially explicit agent-based models using only the R platform. NetLogoR follows the same framework as the NetLogo software (Wilensky (1999) <http://ccl.northwestern.edu/netlogo/>) and is a translation in R of the structure and functions of NetLogo'. NetLogoR provides new R classes to define model agents and functions to implement spatially explicit agent-based models in the R environment. This package allows benefiting of the fast and easy coding phase from the highly developed NetLogo framework, coupled with the versatility, power and massive resources of the R software. Examples of two models from the NetLogo software repository (Ants <http://ccl.northwestern.edu/netlogo/models/Ants>) and Wolf-Sheep-Predation (<http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation>), and a third, Butterfly, from Railsback and Grimm (2012) <https://www.railsback-grimm-abm-book.com/>, all written using NetLogoR are available. The NetLogo code of the original version of these models is provided alongside. A programming guide inspired from the NetLogo Programming Guide (<https://ccl.northwestern.edu/netlogo/docs/programming.html>) and a dictionary of NetLogo primitives (<https://ccl.northwestern.edu/netlogo/docs/dictionary.html>) equivalences are also available. NOTE: To increment time', these functions can use a for loop or can be integrated with a discrete event simulator, such as SpaDES (<https://cran.r-project.org/package=SpaDES>). The suggested package fastshp can be installed with install.packages("fastshp", repos = ("<https://rforge.net>"), type = "source")'.

r-lactater 0.2.0
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-segmented@2.1-4 r-rlang@1.1.6 r-pracma@2.4.4 r-patchwork@1.3.0 r-minpack-lm@1.2-4 r-magrittr@2.0.3 r-lubridate@1.9.4 r-ggtext@0.1.2 r-ggplot2@3.5.2 r-forcats@1.0.0 r-dplyr@1.1.4 r-broom@1.0.8
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=lactater
Licenses: Expat
Synopsis: Tools for Analyzing Lactate Thresholds
Description:

Set of tools for analyzing lactate thresholds from a step incremental test to exhaustion. Easily analyze the methods Log-log, Onset of Blood Lactate Accumulation (OBLA), Baseline plus (Bsln+), Dmax, Lactate Turning Point (LTP), and Lactate / Intensity ratio (LTratio) in cycling, running, or swimming. Beaver WL, Wasserman K, Whipp BJ (1985) <doi:10.1152/jappl.1985.59.6.1936>. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) <doi:10.1055/s-2008-1025824>. Kindermann W, Simon G, Keul J (1979) <doi:10.1007/BF00421101>. Skinner JS, Mclellan TH (1980) <doi:10.1080/02701367.1980.10609285>. Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, Keul J (1990) PMID 2408033. Zoladz JA, Rademaker AC, Sargeant AJ (1995) <doi:10.1113/jphysiol.1995.sp020959>. Cheng B, Kuipers H, Snyder A, Keizer H, Jeukendrup A, Hesselink M (1992) <doi:10.1055/s-2007-1021309>. Bishop D, Jenkins DG, Mackinnon LT (1998) <doi:10.1097/00005768-199808000-00014>. Hughson RL, Weisiger KH, Swanson GD (1987) <doi:10.1152/jappl.1987.62.5.1975>. Jamnick NA, Botella J, Pyne DB, Bishop DJ (2018) <doi:10.1371/journal.pone.0199794>. Hofmann P, Tschakert G (2017) <doi:10.3389/fphys.2017.00337>. Hofmann P, Pokan R, von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) <doi:10.1097/00005768-199706000-00005>. Pokan R, Hofmann P, Von Duvillard SP, et al. (1997) <doi:10.1097/00005768-199708000-00009>. Dickhuth H-H, Yin L, Niess A, et al. (1999) <doi:10.1055/s-2007-971105>.

r-emtscore 0.1.1
Propagated dependencies: r-stringr@1.5.1 r-seurat@5.3.0 r-pheatmap@1.0.12 r-paletteer@1.6.0 r-nsprcomp@0.5.1-2 r-magrittr@2.0.3 r-gsva@2.2.0 r-gsa@1.03.3 r-gridextra@2.3 r-ggthemes@5.1.0 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17 r-curl@6.2.2 r-complexheatmap@2.24.0 r-circlize@0.4.16 r-aucell@1.30.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EMTscore
Licenses: GPL 3
Synopsis: Calculate 'EMT' Scores Based on 'Omics' Data
Description:

Epithelial-Mesenchymal transition ('EMT') is an important form of cellular plasticity that is fully or partially activated in several biological scenarios including development and disease progression. EMT involves altered expression of hundreds of protein-coding and non-protein-coding genes. Recent studies showed the prevalence of partial EMT in multiple processes such as various cancers and organ fibrosis, which necessitates rigorous quantification of the degree of EMT'. While traditional gene set scoring methods such as gene set variation analysis have been used to generate EMT scores from omics data, multiple EMT scoring algorithms and EMT gene sets have been used by different groups without standardization. Furthermore, comparisons of EMT scores computed from different methods and/or different EMT gene sets are generally difficult due to both the context dependent nature of EMT and the lack of tools that comprehensively integrate varying components for EMT scoring. To address this problem, we have built a toolbox named EMTscore that enables users to select scoring methods from a list of previously used algorithms and EMT gene sets from a list of gene sets produced from different experiments. We provided several visualization methods for making publication quality plots of EMT scores from omics data. Furthermore, we showed a unique utility of a method based on principal component analysis for scoring divergent EMT processes from a single dataset. Overall, EMTscore provides an integrated solution for assessing the degree and complexity of EMT from omics data, and it paves the way for standardizing the comparison of EMT programs across multiple contexts.

r-iatscore 0.2.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IATScore
Licenses: Expat
Synopsis: Scoring Algorithm for the Implicit Association Test (IAT)
Description:

This minimalist package is designed to quickly score raw data outputted from an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) <doi:10.1037/0022-3514.74.6.1464>. IAT scores are calculated as specified by Greenwald, Nosek, and Banaji (2003) <doi:10.1037/0022-3514.85.2.197>. Outputted values can be interpreted as effect sizes. The input function consists of three arguments. First, indicate the name of the dataset to be analyzed. This is the only required input. Second, indicate the number of trials in your entire IAT (the default is set to 219, which is typical for most IATs). Last, indicate whether congruent trials (e.g., flowers and pleasant) or incongruent trials (e.g., guns and pleasant) were presented first for this participant (the default is set to congruent). The script will tell you how long it took to run the code, the effect size for the participant, and whether that participant should be excluded based on the criteria outlined by Greenwald et al. (2003). Data files should consist of six columns organized in order as follows: Block (0-6), trial (0-19 for training blocks, 0-39 for test blocks), category (dependent on your IAT), the type of item within that category (dependent on your IAT), a dummy variable indicating whether the participant was correct or incorrect on that trial (0=correct, 1=incorrect), and the participantâ s reaction time (in milliseconds). Three sample datasets are included in this package (labeled IAT', TooFastIAT', and BriefIAT') to practice with.

r-fuzzysts 0.3
Propagated dependencies: r-polynom@1.4-1 r-fuzzynumbers@0.4-7
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=FuzzySTs
Licenses: Expat
Synopsis: Fuzzy Statistical Tools
Description:

The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled "The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi: 10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2_1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) <ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.

r-clvtools 0.11.2
Propagated dependencies: r-testthat@3.2.3 r-rcppgsl@0.3.13 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-optimx@2025-4.9 r-numderiv@2016.8-1.1 r-matrix@1.7-3 r-mass@7.3-65 r-lubridate@1.9.4 r-ggplot2@3.5.2 r-formula@1.2-5 r-digest@0.6.37 r-data-table@1.17.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/bachmannpatrick/CLVTools
Licenses: GPL 3
Synopsis: Tools for Customer Lifetime Value Estimation
Description:

This package provides a set of state-of-the-art probabilistic modeling approaches to derive estimates of individual customer lifetime values (CLV). Commonly, probabilistic approaches focus on modelling 3 processes, i.e. individuals attrition, transaction, and spending process. Latent customer attrition models, which are also known as "buy-'til-you-die models", model the attrition as well as the transaction process. They are used to make inferences and predictions about transactional patterns of individual customers such as their future purchase behavior. Moreover, these models have also been used to predict individualsâ long-term engagement in activities such as playing an online game or posting to a social media platform. The spending process is usually modelled by a separate probabilistic model. Combining these results yields in lifetime values estimates for individual customers. This package includes fast and accurate implementations of various probabilistic models for non-contractual settings (e.g., grocery purchases or hotel visits). All implementations support time-invariant covariates, which can be used to control for e.g., socio-demographics. If such an extension has been proposed in literature, we further provide the possibility to control for time-varying covariates to control for e.g., seasonal patterns. Currently, the package includes the following latent attrition models to model individuals attrition and transaction process: [1] Pareto/NBD model (Pareto/Negative-Binomial-Distribution), [2] the Extended Pareto/NBD model (Pareto/Negative-Binomial-Distribution with time-varying covariates), [3] the BG/NBD model (Beta-Gamma/Negative-Binomial-Distribution) and the [4] GGom/NBD (Gamma-Gompertz/Negative-Binomial-Distribution). Further, we provide an implementation of the Gamma/Gamma model to model the spending process of individuals.

r-cointreg 0.2.0
Propagated dependencies: r-matrixstats@1.5.0 r-mass@7.3-65 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/aschersleben/cointReg
Licenses: GPL 3
Synopsis: Parameter Estimation and Inference in a Cointegrating Regression
Description:

Cointegration methods are widely used in empirical macroeconomics and empirical finance. It is well known that in a cointegrating regression the ordinary least squares (OLS) estimator of the parameters is super-consistent, i.e. converges at rate equal to the sample size T. When the regressors are endogenous, the limiting distribution of the OLS estimator is contaminated by so-called second order bias terms, see e.g. Phillips and Hansen (1990) <DOI:10.2307/2297545>. The presence of these bias terms renders inference difficult. Consequently, several modifications to OLS that lead to zero mean Gaussian mixture limiting distributions have been proposed, which in turn make standard asymptotic inference feasible. These methods include the fully modified OLS (FM-OLS) approach of Phillips and Hansen (1990) <DOI:10.2307/2297545>, the dynamic OLS (D-OLS) approach of Phillips and Loretan (1991) <DOI:10.2307/2298004>, Saikkonen (1991) <DOI:10.1017/S0266466600004217> and Stock and Watson (1993) <DOI:10.2307/2951763> and the new estimation approach called integrated modified OLS (IM-OLS) of Vogelsang and Wagner (2014) <DOI:10.1016/j.jeconom.2013.10.015>. The latter is based on an augmented partial sum (integration) transformation of the regression model. IM-OLS is similar in spirit to the FM- and D-OLS approaches, with the key difference that it does not require estimation of long run variance matrices and avoids the need to choose tuning parameters (kernels, bandwidths, lags). However, inference does require that a long run variance be scaled out. This package provides functions for the parameter estimation and inference with all three modified OLS approaches. That includes the automatic bandwidth selection approaches of Andrews (1991) <DOI:10.2307/2938229> and of Newey and West (1994) <DOI:10.2307/2297912> as well as the calculation of the long run variance.

r-var-spec 1.0
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://cran.r-project.org/package=VAR.spec
Licenses: GPL 2
Synopsis: Allows Specifying a Bivariate VAR (Vector Autoregression) with Desired Spectral Characteristics
Description:

The spectral characteristics of a bivariate series (Marginal Spectra, Coherency- and Phase-Spectrum) determine whether there is a strong presence of short-, medium-, or long-term fluctuations (components of certain frequencies in the spectral representation of the series) in each one of them. These are induced by strong peaks of the marginal spectra of each series at the corresponding frequencies. The spectral characteristics also determine how strongly these short-, medium-, or long-term fluctuations of the two series are correlated between the two series. Information on this is provided by the Coherency spectrum at the corresponding frequencies. Finally, certain fluctuations of the two series may be lagged to each other. Information on this is provided by the Phase spectrum at the corresponding frequencies. The idea in this package is to define a VAR (Vector autoregression) model with desired spectral characteristics by specifying a number of polynomials, required to define the VAR. See Ioannidis(2007) <doi:10.1016/j.jspi.2005.12.013>. These are specified via their roots, instead of via their coefficients. This is an idea borrowed from the Time Series Library of R. Dahlhaus, where it is used for defining ARMA models for univariate time series. This way, one may e.g. specify a VAR inducing a strong presence of long-term fluctuations in series 1 and in series 2, which are weakly correlated, but lagged by a number of time units to each other, while short-term fluctuations in series 1 and in series 2, are strongly present only in one of the two series, while they are strongly correlated to each other between the two series. Simulation from such models allows studying the behavior of data-analysis tools, such as estimation of the spectra, under different circumstances, as e.g. peaks in the spectra, generating bias, induced by leakage.

r-corpower 1.0.4
Propagated dependencies: r-survival@3.8-3 r-osdesign@1.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/mjuraska/CoRpower
Licenses: GPL 2
Synopsis: Power Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials
Description:

Calculates power for assessment of intermediate biomarker responses as correlates of risk in the active treatment group in clinical efficacy trials, as described in Gilbert, Janes, and Huang, Power/Sample Size Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials (2016, Statistics in Medicine). The methods differ from past approaches by accounting for the level of clinical treatment efficacy overall and in biomarker response subgroups, which enables the correlates of risk results to be interpreted in terms of potential correlates of efficacy/protection. The methods also account for inter-individual variability of the observed biomarker response that is not biologically relevant (e.g., due to technical measurement error of the laboratory assay used to measure the biomarker response), which is important because power to detect a specified correlate of risk effect size is heavily affected by the biomarker's measurement error. The methods can be used for a general binary clinical endpoint model with a univariate dichotomous, trichotomous, or continuous biomarker response measured in active treatment recipients at a fixed timepoint after randomization, with either case-cohort Bernoulli sampling or case-control without-replacement sampling of the biomarker (a baseline biomarker is handled as a trivial special case). In a specified two-group trial design, the computeN() function can initially be used for calculating additional requisite design parameters pertaining to the target population of active treatment recipients observed to be at risk at the biomarker sampling timepoint. Subsequently, the power calculation employs an inverse probability weighted logistic regression model fitted by the tps() function in the osDesign package. Power results as well as the relationship between the correlate of risk effect size and treatment efficacy can be visualized using various plotting functions. To link power calculations for detecting a correlate of risk and a correlate of treatment efficacy, a baseline immunogenicity predictor (BIP) can be simulated according to a specified classification rule (for dichotomous or trichotomous BIPs) or correlation with the biomarker response (for continuous BIPs), then outputted along with biomarker response data under assignment to treatment, and clinical endpoint data for both treatment and placebo groups.

r-anaconda 0.1.5
Propagated dependencies: r-rcolorbrewer@1.1-3 r-rafalib@1.0.4 r-plyr@1.8.9 r-pheatmap@1.0.12 r-lookup@1.0 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-deseq2@1.48.1 r-data-table@1.17.2 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/PLStenger/Anaconda
Licenses: GPL 2+
Synopsis: Targeted Differential and Global Enrichment Analysis of Taxonomic Rank by Shared Asvs
Description:

Targeted differential and global enrichment analysis of taxonomic rank by shared ASVs (Amplicon Sequence Variant), for high-throughput eDNA sequencing of fungi, bacteria, and metazoan. Actually works in two steps: I) Targeted differential analysis from QIIME2 data and II) Global analysis by Taxon Mann-Whitney U test analysis from targeted analysis (I) (I) Estimate variance-mean dependence in count/abundance ASVs data from high-throughput sequencing assays and test for differential represented ASVs based on a model using the negative binomial distribution. (II) NCBITaxon_MWU uses continuous measure of significance (such as fold-change or -log(p-value)) to identify NCBITaxon that are significantly enriches with either up- or down-represented ASVs. If the measure is binary (0 or 1) the script will perform a typical NCBITaxon enrichment analysis based Fisher's exact test: it will show NCBITaxon over-represented among the ASVs that have 1 as their measure. On the plot, different fonts are used to indicate significance and color indicates enrichment with either up (red) or down (blue) regulated ASVs. No colors are shown for binary measure analysis. The tree on the plot is hierarchical clustering of NCBITaxon based on shared ASVs. Categories with no branch length between them are subsets of each other. The fraction next to the category name indicates the fraction of good ASVs in it; good ASVs are the ones exceeding the arbitrary absValue cutoff (option in taxon_mwuPlot()). For Fisher's based test, specify absValue=0.5. This value does not affect statistics and is used for plotting only. The original idea was for genes differential expression analysis from Wright et al (2015) <doi:10.1186/s12864-015-1540-2>; adapted here for taxonomic analysis. The Anaconda package makes it possible to carry out these analyses by automatically creating several graphs and tables and storing them in specially created subfolders. You will need your QIIME2 pipeline output for each kingdom (eg; Fungi and/or Bacteria and/or Metazoan): i) taxonomy.tsv, ii) taxonomy_RepSeq.tsv, iii) ASV.tsv and iv) SampleSheet_comparison.txt (the latter being created by you).

r-puniform 0.2.7
Propagated dependencies: r-adgoftest@0.3 r-metafor@4.8-0 r-numderiv@2016.8-1.1 r-rcpp@1.0.14 r-rcpparmadillo@14.4.2-1
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/RobbievanAert/puniform
Licenses: GPL 2+
Synopsis: Meta-Analysis Methods Correcting for Publication Bias
Description:

This package provides meta-analysis methods that correct for publication bias and outcome reporting bias. Four methods and a visual tool are currently included in the package.

  1. The p-uniform method as described in van Assen, van Aert, and Wicherts (2015) doi:10.1037/met0000025 can be used for estimating the average effect size, testing the null hypothesis of no effect, and testing for publication bias using only the statistically significant effect sizes of primary studies.

  2. The p-uniform* method as described in van Aert and van Assen (2019) doi:10.31222/osf.io/zqjr9. This method is an extension of the p-uniform method that allows for estimation of the average effect size and the between-study variance in a meta-analysis, and uses both the statistically significant and nonsignificant effect sizes.

  3. The hybrid method as described in van Aert and van Assen (2017) doi:10.3758/s13428-017-0967-6. The hybrid method is a meta-analysis method for combining an original study and replication and while taking into account statistical significance of the original study. The p-uniform and hybrid method are based on the statistical theory that the distribution of p-values is uniform conditional on the population effect size.

  4. The fourth method in the package is the Snapshot Bayesian Hybrid Meta-Analysis Method as described in van Aert and van Assen (2018) doi:10.1371/journal.pone.0175302. This method computes posterior probabilities for four true effect sizes (no, small, medium, and large) based on an original study and replication while taking into account publication bias in the original study. The method can also be used for computing the required sample size of the replication akin to power analysis in null hypothesis significance testing.

The meta-plot is a visual tool for meta-analysis that provides information on the primary studies in the meta-analysis, the results of the meta-analysis, and characteristics of the research on the effect under study (van Assen and others, 2020).

Helper functions to apply the Correcting for Outcome Reporting Bias (CORB) method to correct for outcome reporting bias in a meta-analysis (van Aert & Wicherts, 2020).

r-gausscov 1.1.5
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gausscov
Licenses: GPL 3
Synopsis: The Gaussian Covariate Method for Variable Selection
Description:

The standard linear regression theory whether frequentist or Bayesian is based on an assumed (revealed?) truth (John Tukey) attitude to models. This is reflected in the language of statistical inference which involves a concept of truth, for example confidence intervals, hypothesis testing and consistency. The motivation behind this package was to remove the word true from the theory and practice of linear regression and to replace it by approximation. The approximations considered are the least squares approximations. An approximation is called valid if it contains no irrelevant covariates. This is operationalized using the concept of a Gaussian P-value which is the probability that pure Gaussian noise is better in term of least squares than the covariate. The precise definition given in the paper, it is intuitive and requires only four simple equations. Its overwhelming advantage compared with a standard F P-value is that is is exact and valid whatever the data. In contrast F P-values are only valid for specially designed simulations. Given this a valid approximation is one where all the Gaussian P-values are less than a threshold p0 specified by the statistician, in this package with the default value 0.01. This approximations approach is not only much simpler it is overwhelmingly better than the standard model based approach. The will be demonstrated using six real data sets, four from high dimensional regression and two from vector autoregression. The simplicity and superiority of Gaussian P-values derive from their universal exactness and validity. This is in complete contrast to standard F P-values which are valid only for carefully designed simulations. The function f1st is the most important function. It is a greedy forward selection procedure which results in either just one or no approximations which may however not be valid. If the size is less than than a threshold with default value 21 then an all subset procedure is called which returns the best valid subset. A good default start is f1st(y,x,kmn=15) The best function for returning multiple approximations is f3st which repeatedly calls f1st. For more information see the web site below and the accompanying papers: L. Davies and L. Duembgen, "Covariate Selection Based on a Model-free Approach to Linear Regression with Exact Probabilities", <doi:10.48550/arXiv.2202.01553>, L. Davies, "An Approximation Based Theory of Linear Regression", 2024, <doi:10.48550/arXiv.2402.09858>.

r-wrproteo 1.13.1
Propagated dependencies: r-wrmisc@1.15.3.1 r-limma@3.64.0 r-knitr@1.50
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=wrProteo
Licenses: GPL 3
Synopsis: Proteomics Data Analysis Functions
Description:

Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted. Initial results from multiple software for protein (and peptide) quantitation can be imported (to a common format): MaxQuant (Tyanova et al 2016 <doi:10.1038/nprot.2016.136>), Dia-NN (Demichev et al 2020 <doi:10.1038/s41592-019-0638-x>), Fragpipe (da Veiga et al 2020 <doi:10.1038/s41592-020-0912-y>), ionbot (Degroeve et al 2021 <doi:10.1101/2021.07.02.450686>), MassChroq (Valot et al 2011 <doi:10.1002/pmic.201100120>), OpenMS (Strauss et al 2021 <doi:10.1038/nmeth.3959>), ProteomeDiscoverer (Orsburn 2021 <doi:10.3390/proteomes9010015>), Proline (Bouyssie et al 2020 <doi:10.1093/bioinformatics/btaa118>), AlphaPept (preprint Strauss et al <doi:10.1101/2021.07.23.453379>) and Wombat-P (Bouyssie et al 2023 <doi:10.1021/acs.jproteome.3c00636>. Meta-data provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms. Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included. Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package limma <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events. Multi-species samples, as frequently used in benchmark-tests (eg Navarro et al 2016 <doi:10.1038/nbt.3685>, Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches. As detailed example the data-set from Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.

r-mhctools 1.5.5
Propagated dependencies: r-openxlsx@4.2.8 r-mgcv@1.9-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MHCtools
Licenses: Expat
Synopsis: Analysis of MHC Data in Non-Model Species
Description:

Fifteen tools for bioinformatics processing and analysis of major histocompatibility complex (MHC) data. The functions are tailored for amplicon data sets that have been filtered using the dada2 method (for more information on dada2, visit <https://benjjneb.github.io/dada2/> ), but even other types of data sets can be analyzed. The ReplMatch() function matches replicates in data sets in order to evaluate genotyping success. The GetReplTable() and GetReplStats() functions perform such an evaluation. The CreateFas() function creates a fasta file with all the sequences in the data set. The CreateSamplesFas() function creates individual fasta files for each sample in the data set. The DistCalc() function calculates Grantham, Sandberg, or p-distances from pairwise comparisons of all sequences in a data set, and mean distances of all pairwise comparisons within each sample in a data set. The function additionally outputs five tables with physico-chemical z-descriptor values (based on Sandberg et al. 1998) for each amino acid position in all sequences in the data set. These tables may be useful for further downstream analyses, such as estimation of MHC supertypes. The BootKmeans() function is a wrapper for the kmeans() function of the stats package, which allows for bootstrapping. Bootstrapping k-estimates may be desirable in data sets, where e.g. BIC- vs. k-values do not produce clear inflection points ("elbows"). BootKmeans() performs multiple runs of kmeans() and estimates optimal k-values based on a user-defined threshold of BIC reduction. The method is an automated and bootstrapped version of visually inspecting elbow plots of BIC- vs. k-values. The ClusterMatch() function is a tool for evaluating whether different k-means() clustering models identify similar clusters, and summarize bootstrap model stats as means for different estimated values of k. It is designed to take files produced by the BootKmeans() function as input, but other data can be analyzed if the descriptions of the required data formats are observed carefully. The PapaDiv() function compares parent pairs in the data set and calculate their joint MHC diversity, taking into account sequence variants that occur in both parents. The HpltFind() function infers putative haplotypes from families in the data set. The GetHpltTable() and GetHpltStats() functions evaluate the accuracy of the haplotype inference. The CreateHpltOccTable() function creates a binary (logical) haplotype-sequence occurrence matrix from the output of HpltFind(), for easy overview of which sequences are present in which haplotypes. The HpltMatch() function compares haplotypes to help identify overlapping and potentially identical types. The NestTablesXL() function translates the output from HpltFind() to an Excel workbook, that provides a convenient overview for evaluation and curating of the inferred putative haplotypes.

rust-reopen 0.3.0
Channel: guix
Location: gnu/packages/crates-io.scm (gnu packages crates-io)
Home page: https://github.com/vorner/reopen
Licenses: ASL 2.0 Expat
Synopsis: File reopening utility
Description:

File reopening utility.

rust-reopen 1.0.3
Channel: guix
Location: gnu/packages/crates-io.scm (gnu packages crates-io)
Home page: https://github.com/vorner/reopen
Licenses: ASL 2.0 Expat
Synopsis: File reopening utility
Description:

File reopening utility.

r-rethinker 1.1.0
Propagated dependencies: r-rjson@0.2.23
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/mbq/rethinker
Licenses: GPL 3
Synopsis: RethinkDB Client
Description:

Simple, native RethinkDB client.

r-rgenetics 0.1
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=RGenetics
Licenses: GPL 2+
Synopsis: R packages for genetics research
Description:

R packages for genetics research.

r-rwekajars 3.9.3-2
Dependencies: openjdk@24.0.1
Propagated dependencies: r-rjava@1.0-11
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=RWekajars
Licenses: GPL 2
Synopsis: R/Weka Interface Jars
Description:

External jars required for package RWeka'.

rust-random 0.12.2
Channel: guix
Location: gnu/packages/crates-io.scm (gnu packages crates-io)
Home page: https://github.com/stainless-steel/random
Licenses: ASL 2.0 Expat
Synopsis: Sources of randomness
Description:

The package provides sources of randomness.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
Total results: 36659