Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements parsimonious hidden Markov models for four-way data via expectation- conditional maximization algorithm, as described in Tomarchio et al. (2020) <arXiv:2107.04330>. The matrix-variate normal distribution is used as emission distribution. For each hidden state, parsimony is reached via the eigen-decomposition of the covariance matrices of the emission distribution. This produces a family of 98 parsimonious hidden Markov models.
Normalizes the data from a file containing the raw values of the SNP probes of microarray data by using the FISH probes and their corresponding copy number.
This package provides functions to automate the detection and resolution of taxonomic and stratigraphic errors in fossil occurrence datasets. Functions were developed using data from the Paleobiology Database.
Implementation of the FVIBES, the Fuzzy Variable-Importance Based Eigenspace Separation algorithm as described in the paper by Ghashti, J.S., Hare, W., and J.R.J. Thompson (2025). Variable-Weighted Adjacency Constructions for Fuzzy Spectral Clustering. Submitted.
The goal of this package is to provide an improved version of WA-PLS (Weighted Averaging Partial Least Squares) by including the tolerances of taxa and the frequency of the sampled climate variable. This package also provides a way of leave-out cross-validation that removes both the test site and sites that are both geographically close and climatically close for each cycle, to avoid the risk of pseudo-replication.
Compute alpha and beta contributional diversity metrics, which is intended for linking taxonomic and functional microbiome data. See GitHub repository for the tutorial: <https://github.com/gavinmdouglas/FuncDiv/wiki>. Citation: Gavin M. Douglas, Sunu Kim, Morgan G. I. Langille, B. Jesse Shapiro (2023) <doi:10.1093/bioinformatics/btac809>.
Finds features through a detailed analysis of model residuals using rpart classification and regression trees. Scans the residuals of a model across subsets of the data to identify areas where the model differs from the actual data.
Screens daily streamflow time series for temporal trends and change-points. This package has been primarily developed for assessing the quality of daily streamflow time series. It also contains tools for plotting and calculating many different streamflow metrics. The package can be used to produce summary screening plots showing change-points and significant temporal trends for high flow, low flow, and/or baseflow statistics, or it can be used to perform more detailed hydrological time series analyses. The package was designed for screening daily streamflow time series from Water Survey Canada and the United States Geological Survey but will also work with streamflow time series from many other agencies. Package update to version 2.0 made updates to read.flows function to allow loading of GRDC and ROBIN streamflow record formats. This package uses the `changepoint` package for change point detection. For more information on change point methods, see the changepoint package at <https://cran.r-project.org/package=changepoint>.
Parse and create Darwin Core (<http://rs.tdwg.org/dwc/>) Simple and Archives. Functionality includes reading and parsing all the files in a Darwin Core Archive, including the datasets and metadata; read and parse simple Darwin Core files; and validation of Darwin Core Archives.
Access small example datasets from Luquillo, a ForestGEO site in Puerto Rico (<https://forestgeo.si.edu/sites/north-america/luquillo>).
This package provides tools for analyzing remote sensing forest data, including functions for detecting treetops from canopy models, outlining tree crowns, and calculating textural metrics.
FastGit <https://doc.fastgit.org/> works like a mirror of GitHub to make significant acceleration. fgitR is a package to do git operation with FastGit automatically.
Used for the design and analysis of a 2x2 factorial trial for a time-to-event endpoint. It performs power calculations and significance testing as well as providing estimates of the relevant hazard ratios and the corresponding 95% confidence intervals. Important reference papers include Slud EV. (1994) <https://www.ncbi.nlm.nih.gov/pubmed/8086609> Lin DY, Gong J, Gallo P, Bunn PH, Couper D. (2016) <DOI:10.1111/biom.12507> Leifer ES, Troendle JF, Kolecki A, Follmann DA. (2020) <https://github.com/EricSLeifer/factorial2x2/blob/master/Leifer%20et%20al.%20paper.pdf>.
Estimate parameters of univariate probability distributions with maximum likelihood and Bayesian methods.
This package provides a framework for predicting retention times in liquid chromatography. Users can train custom models for specific chromatography columns, predict retention times using existing models, or adjust existing models to account for altered experimental conditions. The provided functionalities can be accessed either via the R console or via a graphical user interface. Related work: Bonini et al. (2020) <doi:10.1021/acs.analchem.9b05765>.
The funFEM algorithm (Bouveyron et al., 2014) allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.
Transformations that allow obtaining a flat table from reports in text or Excel format that contain data in the form of pivot tables. They can be defined for a single report and applied to a set of reports.
This package provides a neighborhood-based, greedy search algorithm is performed to estimate a feature allocation by minimizing the expected loss based on posterior samples from the feature allocation distribution. The method is described in Dahl, Johnson, and Andros (2023) "Comparison and Bayesian Estimation of Feature Allocations" <doi:10.1080/10618600.2023.2204136>.
This package provides generic data structures and algorithms for use with forest mensuration data in a consistent framework. The functions and objects included are a collection of broadly applicable tools. More specialized applications should be implemented in separate packages that build on this foundation. Documentation about ForestElementsR is provided by three vignettes included in this package. For an introduction to the field of forest mensuration, refer to the textbooks by Kershaw et al. (2017) <doi:10.1002/9781118902028>, and van Laar and Akca (2007) <doi:10.1007/978-1-4020-5991-9>.
Estimates the conditional error distributions of random forest predictions and common parameters of those distributions, including conditional misclassification rates, conditional mean squared prediction errors, conditional biases, and conditional quantiles, by out-of-bag weighting of out-of-bag prediction errors as proposed by Lu and Hardin (2021). This package is compatible with several existing packages that implement random forests in R.
An implementation of the Fizz Buzz algorithm, as defined e.g. in <https://en.wikipedia.org/wiki/Fizz_buzz>. It provides the standard algorithm with 3 replaced by Fizz and 5 replaced by Buzz, with the option of specifying start and end numbers, step size and the numbers being replaced by fizz and buzz, respectively. This package gives interviewers the optional answer of "I use fizzbuzzR::fizzbuzz()" when interviewing rather than having to write an algorithm themselves.
The parameters p and q are estimated with the aid of a randomized Sierpinski Carpet which is built on a [p-p-p-q]-model. Thereby, for three times a simulation with a p-value and once with a q-value is assumed. Hence, these parameters are estimated and displayed. Moreover, functions for simulating random Sierpinski-Carpets with constant and variable probabilities are included. For more details on the method please see Hermann et al. (2015) <doi:10.1002/sim.6497>.
Multidimensional scaling (MDS) functions for various tasks that are beyond the beta stage and way past the alpha stage. Currently, options are available for weights, restrictions, classical scaling or principal coordinate analysis, transformations (linear, power, Box-Cox, spline, ordinal), outlier mitigation (rdop), out-of-sample estimation (predict), negative dissimilarities, fast and faster executions with low memory footprints, penalized restrictions, cross-validation-based penalty selection, supplementary variable estimation (explain), additive constant estimation, mixed measurement level distance calculation, restricted classical scaling, etc. More will come in the future. References. Busing (2024) "A Simple Population Size Estimator for Local Minima Applied to Multidimensional Scaling". Manuscript submitted for publication. Busing (2025) "Node Localization by Multidimensional Scaling with Iterative Majorization". Manuscript submitted for publication. Busing (2025) "Faster Multidimensional Scaling". Manuscript in preparation. Barroso and Busing (2025) "e-RDOP, Relative Density-Based Outlier Probabilities, Extended to Proximity Mapping". Manuscript submitted for publication.
Enhance R help system by fuzzy search and preview interface, pseudo-postfix operators, and more. The `?.` pseudo-postfix operator and the `?` prefix operator displays documents and contents (source or structure) of objects simultaneously to help understanding the objects. The `?p` pseudo-postfix operator displays package documents, and is shorter than help(package = foo).