Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for generating an informative type of line graph, the frequency profile, which allows single behaviors, multiple behaviors, or the specific behavioral patterns of individual subjects to be graphed from occurrence/nonoccurrence behavioral data.
This package provides a set of function for clustering data observation with hybrid method Fuzzy ART and K-Means by Sengupta, Ghosh & Dan (2011) <doi:10.1080/0951192X.2011.602362>.
Fits Zeta distributions (discrete power laws) to data that arises from forensic surveys of clothing on the presence of glass and paint in various populations. The general method is described to some extent in Coulson, S.A., Buckleton, J.S., Gummer, A.B., and Triggs, C.M. (2001) <doi:10.1016/S1355-0306(01)71847-3>, although the implementation differs.
Fast censored linear regression for the accelerated failure time (AFT) model of Huang (2013) <doi:10.1111/sjos.12031>.
R companion to Tsay (2005) Analysis of Financial Time Series, second edition (Wiley). Includes data sets, functions and script files required to work some of the examples. Version 0.3-x includes R objects for all data files used in the text and script files to recreate most of the analyses in chapters 1-3 and 9 plus parts of chapters 4 and 11.
Create descriptive file names with ease. New file names are automatically (but optionally) time stamped and placed in date stamped directories. Streamline your analysis pipeline with input and output file names that have informative tags and proper file extensions.
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" by Rob J Hyndman and George Athanasopoulos <https://OTexts.com/fpp3/>. All packages required to run the examples are also loaded. Additional data sets not used in the book are also included.
This package provides functions for analysing and modelling extreme events in financial time Series. The topics include: (i) data pre-processing, (ii) explorative data analysis, (iii) peak over threshold modelling, (iv) block maxima modelling, (v) estimation of VaR and CVaR, and (vi) the computation of the extreme index.
Automated time series forecasting developed by Microsoft Finance. The Microsoft Finance Time Series Forecasting Framework, aka Finn, can be used to forecast any component of the income statement, balance sheet, or any other area of interest by finance. Any numerical quantity over time, Finn can be used to forecast it. While it can be applied outside of the finance domain, Finn was built to meet the needs of financial analysts to better forecast their businesses within a company, and has a lot of built in features that are specific to the needs of financial forecasters. Happy forecasting!
Growth models and forest production require existing data manipulation and the creation of new data, structured from basic forest inventory data. The purpose of this package is provide functions to support these activities.
Many statistical models and analyses in R are implemented through formula objects. The formulaic package creates a unified approach for programmatically and dynamically generating formula objects. Users may specify the outcome and inputs of a model directly, search for variables to include based upon naming patterns, incorporate interactions, and identify variables to exclude. A wide range of quality checks are implemented to identify issues such as misspecified variables, duplication, a lack of contrast in the inputs, and a large number of levels in categorical data. Variables that do not meet these quality checks can be automatically excluded from the model. These issues are documented and reported in a manner that provides greater accountability and useful information to guide an investigation of the data.
This package provides a structured profile likelihood algorithm for the logistic fixed effects model and an approximate expectation maximization (EM) algorithm for the logistic mixed effects model. Based on He, K., Kalbfleisch, J.D., Li, Y. and Li, Y. (2013) <doi:10.1007/s10985-013-9264-6>.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to install and load the entire package-collection with a single R command, and provides convenient ways to find relevant documentation. Most commonly, you should not worry about the individual packages that make up the package-collection as you can access all features via this package. To learn more about ForestGEO visit <http://www.forestgeo.si.edu/>.
This package provides functions to compute fuzzy versions of species occurrence patterns based on presence-absence data (including inverse distance interpolation, trend surface analysis, and prevalence-independent favourability obtained from probability of presence), as well as pair-wise fuzzy similarity (based on fuzzy logic versions of commonly used similarity indices) among those occurrence patterns. Includes also functions for model consensus and comparison (overlap and fuzzy similarity, fuzzy loss, fuzzy gain), and for data preparation, such as obtaining unique abbreviations of species names, defining the background region, cleaning and gridding (thinning) point occurrence data onto raster maps, selecting among (pseudo)absences to address survey bias, converting species lists (long format) to presence-absence tables (wide format), transposing part of a data frame, selecting relevant variables for models, assessing the false discovery rate, or analysing and dealing with multicollinearity. Initially described in Barbosa (2015) <doi:10.1111/2041-210X.12372>.
An implementation of the fair data adaptation with quantile preservation described in Plecko & Meinshausen (JMLR 2020, 21(242), 1-44). The adaptation procedure uses the specified causal graph to pre-process the given training and testing data in such a way to remove the bias caused by the protected attribute. The procedure uses tree ensembles for quantile regression. Instructions for using the methods are further elaborated in the corresponding JSS manuscript, see <doi:10.18637/jss.v110.i04>.
Estimates and provides inference for quantities that assess high dimensional mediation and potential surrogate markers including the direct effect of treatment, indirect effect of treatment, and the proportion of treatment effect explained by a surrogate/mediator; details are described in Zhou et al (2022) <doi:10.1002/sim.9352> and Zhou et al (2020) <doi:10.1093/biomet/asaa016>. This package relies on the optimization software MOSEK', <https://www.mosek.com>.
Takes a distance matrix and plots it as an interactive graph. One point is focused at the center of the graph, around which all other points are plotted in their exact distances as given in the distance matrix. All other non-focus points are plotted as best as possible in relation to one another. Double click on any point to choose a new focus point, and hover over points to see their ID labels. If color label categories are given, hover over colors in the legend to highlight only those points and click on colors to highlight multiple groups. For more information on the rationale and mathematical background, as well as an interactive introduction, see <https://lea-urpa.github.io/focusedMDS.html>.
Designed to streamline the process of analyzing genotyping data from Fluidigm machines, this package offers a suite of tools for data handling and analysis. It includes functions for converting Fluidigm data to format used by PLINK', estimating errors, calculating pairwise similarities, determining pairwise similarity loci, and generating a similarity matrix.
An R interface for generating features for a cohort using data in the Common Data Model. Features can be constructed using default or custom made feature definitions. Furthermore it's possible to aggregate features and get the summary statistics.
This package contains functions to simplify the use of data mining methods (classification, regression, clustering, etc.), for students and beginners in R programming. Various R packages are used and wrappers are built around the main functions, to standardize the use of data mining methods (input/output): it brings a certain loss of flexibility, but also a gain of simplicity. The package name came from the French "Fouille de Données en Master 2 Informatique Décisionnelle".
Read and write PNG images with arrays, rasters, native rasters, numeric arrays, integer arrays, raw vectors and indexed values. This PNG encoder exposes configurable internal options enabling the user to select a speed-size tradeoff. For example, disabling compression can speed up writing PNG by a factor of 50. Multiple image formats are supported including raster, native rasters, and integer and numeric arrays at color depths of 1, 2, 3 or 4. 16-bit images are also supported. This implementation uses the libspng C library which is available from <https://github.com/randy408/libspng/>.
This package provides a fast Rcpp'-based implementation of polynomially-computable voting theory methods for committee ranking and scoring. The package includes methods such as Approval Voting (AV), Satisfaction Approval Voting (SAV), sequential Proportional Approval Voting (PAV), and sequential Phragmen's Rule. Weighted variants of these methods are also provided, allowing for differential voter influence.
Tabacchi et al. (2011) published a very detailed study producing a uniform system of functions to estimate tree volume and phytomass components (stem, branches, stool). The estimates of the 2005 Italian forest inventory (<https://www.inventarioforestale.org/it/>) are based on these functions. The study documents the domain of applicability of each function and the equations to quantify estimates accuracies for individual estimates as well as for aggregated estimates. This package makes the functions available in the R environment. Version 2 exposes two distinct functions for individual and summary estimates. To facilitate access to the functions, tree species identification is now based on EPPO species codes (<https://data.eppo.int/>).
Estimate Barton & Lord's (1981) <doi:10.1002/j.2333-8504.1981.tb01255.x> four parameter IRT model with lower and upper asymptotes using Bayesian formulation described by Culpepper (2016) <doi:10.1007/s11336-015-9477-6>.