Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a toolbox for estimating vector fields from intensive longitudinal data, and construct potential landscapes thereafter. The vector fields can be estimated with two nonparametric methods: the Multivariate Vector Field Kernel Estimator (MVKE) by Bandi & Moloche (2018) <doi:10.1017/S0266466617000305> and the Sparse Vector Field Consensus (SparseVFC) algorithm by Ma et al. (2013) <doi:10.1016/j.patcog.2013.05.017>. The potential landscapes can be constructed with a simulation-based approach with the simlandr package (Cui et al., 2021) <doi:10.31234/osf.io/pzva3>, or the Bhattacharya et al. (2011) method for path integration <doi:10.1186/1752-0509-5-85>.
Stores large arrays in files to avoid occupying large memories. Implemented with super fast gigabyte-level multi-threaded reading/writing via OpenMP'. Supports multiple non-character data types (double, float, complex, integer, logical, and raw).
Fits models to catch and effort data. Single-species models are 1) delta log-normal, 2) Tweedie, or 3) Poisson-gamma (G)LMs.
Import data of tests and questionnaires from FormScanner. FormScanner is an open source software that converts scanned images to data using optical mark recognition (OMR) and it can be downloaded from <http://sourceforge.net/projects/formscanner/>. The spreadsheet file created by FormScanner is imported in a convenient format to perform the analyses provided by the package. These analyses include the conversion of multiple responses to binary (correct/incorrect) data, the computation of the number of corrected responses for each subject or item, scoring using weights,the computation and the graphical representation of the frequencies of the responses to each item and the report of the responses of a few subjects.
This package provides a study based on the screened selection design (SSD) is an exploratory phase II randomized trial with two or more arms but without concurrent control. The primary aim of the SSD trial is to pick a desirable treatment arm (e.g., in terms of the response rate) to recommend to the subsequent randomized phase IIb (with the concurrent control) or phase III. The proposed designs can â partiallyâ control or provide the empirical type I error/false positive rate by an optimal algorithm (implemented by the optimal_2arm_binary() or optimal_3arm_binary() function) for each arm. All the design needed components (sample size, operating characteristics) are supported.
Generate mock data in R using YAML configuration.
Shiny app for the fdapace package.
We implement a cocktail algorithm, a good mixture of coordinate decent, the majorization-minimization principle and the strong rule, for computing the solution paths of the elastic net penalized Cox's proportional hazards model. The package is an implementation of Yang, Y. and Zou, H. (2013) <doi:10.4310/SII.2013.v6.n2.a1>.
Similar to base's unique function, only optimized for working with data frames, especially those that contain date-time columns.
Calculate numerical asymptotic distribution functions of likelihood ratio statistics for fractional unit root tests and tests of cointegration rank. For these distributions, the included functions calculate critical values and P-values used in unit root tests, cointegration tests, and rank tests in the Fractionally Cointegrated Vector Autoregression (FCVAR) model. The functions implement procedures for tests described in the following articles: Johansen, S. and M. Ã . Nielsen (2012) <doi:10.3982/ECTA9299>, MacKinnon, J. G. and M. Ã . Nielsen (2014) <doi:10.1002/jae.2295>.
Estimates fuzzy measures of poverty and deprivation. It also estimates the sampling variance of these measures using bootstrap or jackknife repeated replications.
This package provides the function feis() to estimate fixed effects individual slope (FEIS) models. The FEIS model constitutes a more general version of the often-used fixed effects (FE) panel model, as implemented in the package plm by Croissant and Millo (2008) <doi:10.18637/jss.v027.i02>. In FEIS models, data are not only person demeaned like in conventional FE models, but detrended by the predicted individual slope of each person or group. Estimation is performed by applying least squares lm() to the transformed data. For more details on FEIS models see Bruederl and Ludwig (2015, ISBN:1446252442); Frees (2001) <doi:10.2307/3316008>; Polachek and Kim (1994) <doi:10.1016/0304-4076(94)90075-2>; Ruettenauer and Ludwig (2020) <doi:10.1177/0049124120926211>; Wooldridge (2010, ISBN:0262294354). To test consistency of conventional FE and random effects estimators against heterogeneous slopes, the package also provides the functions feistest() for an artificial regression test and bsfeistest() for a bootstrapped version of the Hausman test.
Allows user to obtain subsets of columns of data or vectors within a list. These subsets will match the original data in terms of average and variation, but have a consistent length of data per column. It is intended for use on automated data generation which may not always output the same N per replicate or sample.
Perform frequency distribution tables, associated histograms and polygons from vector, data.frame and matrix objects for numerical and categorical variables.
For functions that take and return vectors (or scalars), this package provides 8 algorithms for finding fixed point vectors (vectors for which the inputs and outputs to the function are the same vector). These algorithms include Anderson (1965) acceleration <doi:10.1145/321296.321305>, epsilon extrapolation methods (Wynn 1962 <doi:10.2307/2004051>) and minimal polynomial methods (Cabay and Jackson 1976 <doi:10.1137/0713060>).
This package provides a wrapper for the API of the Danish Parliament. It makes it possible to get data from the API easily into a data frame. Learn more at <http://www.ft.dk/dokumenter/aabne_data>.
The goal of this package is to provide wrapper functions in the data cleaning and cleansing processes. These function helps in messages and interaction with the user, keep track of information in pipelines, help in the wrangling, munging, assessment and visualization of data frame-like material.
Efficient approximation of first passage time densities for diffusion processes based on the First Passage Time Location (FPTL) function.
Generates a frequency distribution. The frequency distribution includes raw frequencies, percentages in each category, and cumulative frequencies. The frequency distribution can be stored as a data frame.
Enables high-dimensional penalized regression across heterogeneous subgroups. Fusion penalties are used to share information about the linear parameters across subgroups. The underlying model is described in detail in Dondelinger and Mukherjee (2017) <arXiv:1611.00953>.
In the Cramérâ Lundberg risk process perturbed by a Wiener process, this packages provides approximations to the probability of ruin within a finite time horizon. Currently, there are three methods implemented: The first one uses saddlepoint approximation (two variants are provided), the second one uses importance sampling and the third one is based on the simulation of a dual process. This last method is not very accurate and only given here for completeness.
This package provides a collection of utility functions for manipulating and analyzing factor vectors in R. It offers tools for filtering, splitting, combining, and reordering factor levels based on various criteria. The package is designed to simplify common tasks in categorical data analysis, making it easier to work with factors in a flexible and efficient manner.
Estimates heterogeneous effects in factorial (and conjoint) models. The methodology employs a Bayesian finite mixture of regularized logistic regressions, where moderators can affect each observation's probability of group membership and a sparsity-inducing prior fuses together levels of each factor while respecting ANOVA-style sum-to-zero constraints. Goplerud, Imai, and Pashley (2024) <doi:10.48550/ARXIV.2201.01357> provide further details.
Download data sets from Kenneth's French finance data library site <http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html>, reads all the data subsets from the file. Allows R users to collect the data as tidyverse'-ready data frames.