Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the ESS algorithm following Amol Deshpande, Minos Garofalakis, Michael I Jordan (2013) <doi:10.48550/arXiv.1301.2267>. The ESS algorithm is used for model selection in decomposable graphical models.
This package provides functions of five estimation method for ED50 (50 percent effective dose) are provided, and they are respectively Dixon-Mood method (1948) <doi:10.2307/2280071>, Choi's original turning point method (1990) <doi:10.2307/2531453> and it's modified version given by us, as well as logistic regression and isotonic regression. Besides, the package also supports comparison between two estimation results.
Easily create interactive charts by leveraging the Echarts Javascript library which includes 36 chart types, themes, Shiny proxies and animations.
Estimation tools for multidimensional Gaussian means using empirical Bayesian g-modeling. Methods are able to handle fully observed data as well as left-, right-, and interval-censored observations (Tobit likelihood); descriptions of these methods can be found in Barbehenn and Zhao (2023) <doi:10.48550/arXiv.2306.07239>. Additional, lower-level functionality based on Kiefer and Wolfowitz (1956) <doi:10.1214/aoms/1177728066> and Jiang and Zhang (2009) <doi:10.1214/08-AOS638> is provided that can be used to accelerate many empirical Bayes and nonparametric maximum likelihood problems.
This package implements estimation methods for parameters of common distribution families. The common d, p, q, r function family for each distribution is enriched with the ll, e, and v counterparts, computing the log-likelihood, performing estimation, and calculating the asymptotic variance - covariance matrix, respectively. Parameter estimation is performed analytically whenever possible.
Routines for combining causal effect estimates and study diagnostics across multiple data sites in a distributed study, without sharing patient-level data. Allows for normal and non-normal approximations of the data-site likelihood of the effect parameter.
Runs the eDITH (environmental DNA Integrating Transport and Hydrology) model, which implements a mass balance of environmental DNA (eDNA) transport at a river network scale coupled with a species distribution model to obtain maps of species distribution. eDITH can work with both eDNA concentration (e.g., obtained via quantitative polymerase chain reaction) or metabarcoding (read count) data. Parameter estimation can be performed via Bayesian techniques (via the BayesianTools package) or optimization algorithms. An interface to the DHARMa package for posterior predictive checks is provided. See Carraro and Altermatt (2024) <doi:10.1111/2041-210X.14317> for a package introduction; Carraro et al. (2018) <doi:10.1073/pnas.1813843115> and Carraro et al. (2020) <doi:10.1038/s41467-020-17337-8> for methodological details.
The EconDataverse is a universe of open-source packages to work seamlessly with economic data. This package is designed to make it easy to download selected datasets that are preprocessed by EconDataverse packages and publicly hosted on Hugging Face'. Learn more about the EconDataverse at <https://www.econdataverse.org>.
Production efficiency and economic efficiency are crucial concepts in agriculture/horticulture for sustainable and profitable practices. It helps to determine the optimal use of resources to maximize outputs and profitability. Production efficiency focuses on the optimal use of resources to produce goods, while economic efficiency ensures these goods are produced and allocated in a way that maximizes economic welfare. Production efficiency and economic efficiency are calculated with the help of the formula given by (Kumar et al., 2017) <doi:10.21921/jas.v4i04.10202>.
Implementation of uniformly most powerful invariant equivalence tests for one- and two-sample problems (paired and unpaired) as described in Wellek (2010, ISBN:978-1-4398-0818-4). Also one-sided alternatives (non-inferiority and non-superiority tests) are supported. Basically a variant of a t-test with (relaxed) null and alternative hypotheses exchanged.
This SVG elements generator can easily generate SVG elements such as rect, line, circle, ellipse, polygon, polyline, text and group. Also, it can combine and output SVG elements into a SVG file.
EQ-5D is a popular health related quality of life instrument used in the clinical and economic evaluation of health care. Developed by the EuroQol group <https://euroqol.org/>, the instrument consists of two components: health state description and evaluation. For the description component a subject self-rates their health in terms of five dimensions; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression using either a three-level (EQ-5D-3L, <https://euroqol.org/information-and-support/euroqol-instruments/eq-5d-3l/>) or a five-level (EQ-5D-5L, <https://euroqol.org/information-and-support/euroqol-instruments/eq-5d-5l/>) scale. Frequently the scores on these five dimensions are converted to a single utility index using country specific value sets, which can be used in the clinical and economic evaluation of health care as well as in population health surveys. The eq5d package provides methods to calculate index scores from a subject's dimension scores. 32 TTO and 11 VAS EQ-5D-3L value sets including those for countries in Szende et al (2007) <doi:10.1007/1-4020-5511-0> and Szende et al (2014) <doi:10.1007/978-94-007-7596-1>, 48 EQ-5D-5L EQ-VT value sets, the EQ-5D-5L crosswalk value sets developed by van Hout et al. (2012) <doi:10.1016/j.jval.2012.02.008>, the crosswalk value sets for Bermuda, Jordan and Russia and the van Hout (2021) reverse crosswalk value sets. 11 EQ-5D-Y3L value sets are also included as are the NICE DSU age-sex based EQ-5D-3L to EQ-5D-5L and EQ-5D-5L to EQ-5D-3L mappings. Methods are also included for the analysis of EQ-5D profiles, including those from the book "Methods for Analyzing and Reporting EQ-5D data" by Devlin et al. (2020) <doi:10.1007/978-3-030-47622-9>. Additionally a shiny web tool is included to enable the calculation, visualisation and automated statistical analysis of EQ-5D data via a web browser using EQ-5D dimension scores stored in CSV or Excel files.
This package performs some enhanced variable selection algorithms based on the least absolute shrinkage and selection operator for regression model.
This package provides a tool to operate a batch of univariate or multivariate Cox models and return tidy result.
This package provides a series of R functions that come in handy while working with metabarcoding data. The reasoning of doing this is to have the same functions we use all the time stored in a curated, reproducible way. In a way it is all about putting together the grammar of the tidyverse from Wickham et al.(2019) <doi:10.21105/joss.01686> with the functions we have used in community ecology compiled in packages like vegan from Dixon (2003) <doi:10.1111/j.1654-1103.2003.tb02228.x> and phyloseq McMurdie & Holmes (2013) <doi:10.1371/journal.pone.0061217>. The package includes functions to read sequences from FAST(A/Q) into a tibble ('fasta_reader and fastq_reader'), to process cutadapt Martin (2011) <doi:10.14806/ej.17.1.200> info-file output. When it comes to sequence counts across samples, the package works with the long format in mind (a three column tibble with Sample, Sequence and counts ), with functions to move from there to the wider format.
Testing for parallel trends is crucial in the Difference-in-Differences framework. To this end, this package performs equivalence testing in the context of Difference-in-Differences estimation. It allows users to test if pre-treatment trends in the treated group are â equivalentâ to those in the control group. Here, â equivalenceâ means that rejection of the null hypothesis implies that a function of the pre-treatment placebo effects (maximum absolute, average or root mean squared value) does not exceed a pre-specified threshold below which trend differences are considered negligible. The package is based on the theory developed in Dette & Schumann (2024) <doi:10.1080/07350015.2024.2308121>.
An ensemble method for the statistical detection of a rare class in two-class classification problems. The method uses an ensemble of classifiers where the constituent models of the ensemble use disjoint subsets (phalanxes) of explanatory variables. We provide an implementation of the phalanx-formation algorithm. Please see Tomal et al. (2015) <doi:10.1214/14-AOAS778>, Tomal et al. (2016) <doi:10.1021/acs.jcim.5b00663>, and Tomal et al. (2019) <arXiv:1706.06971> for more details.
Combine pieces of evidence in the form of uncertainty representations.
An assistant built on large language models that helps interpret statistical model outputs in R by generating concise, audience-specific explanations.
Automation of the item selection processes for Rasch scales by means of exhaustive search for suitable Rasch models (dichotomous, partial credit, rating-scale) in a list of item-combinations. The item-combinations to test can be either all possible combinations or item-combinations can be defined by several rules (forced inclusion of specific items, exclusion of combinations, minimum/maximum items of a subset of items). Tests for model fit and item fit include ordering of the thresholds, item fit-indices, likelihood ratio test, Martin-Löf test, Wald-like test, person-item distribution, person separation index, principal components of Rasch residuals, empirical representation of all raw scores or Rasch trees for detecting differential item functioning. The tests, their ordering and their parameters can be defined by the user. For parameter estimation and model tests, functions of the packages eRm', psychotools or pairwise can be used.
This includes a dataset on the outcomes of the USA presidential elections since 1920, and various predictors, as used in <https://www.vanderwalresearch.com/blog/15-elections>.
Este paquete pretende apoyar el proceso enseñanza-aprendizaje de estadà stica descriptiva e inferencial. Las funciones contenidas en el paquete estadistica cubren los conceptos básicos estudiados en un curso introductorio. Muchos conceptos son ilustrados con gráficos dinámicos o web apps para facilitar su comprensión. This package aims to help the teaching-learning process of descriptive and inferential statistics. The functions contained in the package estadistica cover the basic concepts studied in a statistics introductory course. Many concepts are illustrated with dynamic graphs or web apps to make the understanding easier. See: Esteban et al. (2005, ISBN: 9788497323741), Newbold et al.(2019, ISBN:9781292315034 ), Murgui et al. (2002, ISBN:9788484424673) .
Reads water network simulation data in Epanet text-based .inp and .rpt formats into R. Also reads results from Epanet-msx'. Provides basic summary information and plots. The README file has a quick introduction. See <https://www.epa.gov/water-research/epanet> for more information on the Epanet software for modeling hydraulic and water quality behavior of water piping systems.
This package provides a framework that provides the methods for quantifying entropy-based local indicator of spatial association (ELSA) that can be used for both continuous and categorical data. In addition, this package offers other methods to measure local indicators of spatial associations (LISA). Furthermore, global spatial structure can be measured using a variogram-like diagram, called entrogram. For more information, please check that paper: Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., Toxopeus, A. G., & Alibakhshi, S. (2019) <doi:10.1016/j.spasta.2018.10.001>.