Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates family objects identical to stats family but for new links.
It allows running EViews (<https://eviews.com>) program from R, R Markdown and Quarto documents. EViews (Econometric Views) is a statistical software for Econometric analysis. This package integrates EViews and R and also serves as an EViews Knit-Engine for knitr package. Write all your EViews commands in R, R Markdown or Quarto documents. For details, please consult our peer-review article Mati S., Civcir I. and Abba S.I (2023) <doi:10.32614/RJ-2023-045>.
The 2-D spatial and temporal Epidemic Type Aftershock Sequence ('ETAS') Model is widely used to decluster earthquake data catalogs. Usually, the calculation of standard errors of the ETAS model parameter estimates is based on the Hessian matrix derived from the log-likelihood function of the fitted model. However, when an ETAS model is fitted to a local data set over a time period that is limited or short, the standard errors based on the Hessian matrix may be inaccurate. It follows that the asymptotic confidence intervals for parameters may not always be reliable. As an alternative, this package allows for the construction of bootstrap confidence intervals based on empirical quantiles for the parameters of the 2-D spatial and temporal ETAS model. This version improves on Version 0.1.0 of the package by enabling the study space window (renamed study region') to be polygonal rather than merely rectangular. A Japan earthquake data catalog is used in a second example to illustrate this new feature.
Import physiologic data stored in the European Data Format (EDF and EDF+) into R. Both EDF and EDF+ files are supported. Discontinuous EDF+ files are not yet supported.
This package provides computational tools for working with the Extended Laplace distribution, including the probability density function, cumulative distribution function, quantile function, random variate generation based on convolution with Uniform noise and the quantile-quantile plot. Useful for modeling contaminated Laplace data and other applications in robust statistics. See Saah and Kozubowski (2025) <doi:10.1016/j.cam.2025.116588>.
This is a collection of data files for exploring sightings of wild things, relative to weather and tourism patterns in Australia.
This package provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS(), CSTable() and CSInter() commands. The functions for case control studies include the CC(), CCTable() and CCInter() commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. CSTABLE Stata module to calculate summary table for cohort study Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. CCTABLE Stata module to calculate summary table for case-control study Statistical Software Components S456878, Boston College Department of Economics.
Embed interactive charts to their Shiny applications. These charts will be generated by ECharts library developed by Baidu (<http://echarts.baidu.com/>). Current version supports line chart, bar chart, pie chart, scatter plot, gauge, word cloud, radar chart, tree map, and heat map.
This package provides a C++ implementation of the following evolutionary algorithms: Bat Algorithm (Yang, 2010 <doi:10.1007/978-3-642-12538-6_6>), Cuckoo Search (Yang, 2009 <doi:10.1109/nabic.2009.5393690>), Genetic Algorithms (Holland, 1992, ISBN:978-0262581110), Gravitational Search Algorithm (Rashedi et al., 2009 <doi:10.1016/j.ins.2009.03.004>), Grey Wolf Optimization (Mirjalili et al., 2014 <doi:10.1016/j.advengsoft.2013.12.007>), Harmony Search (Geem et al., 2001 <doi:10.1177/003754970107600201>), Improved Harmony Search (Mahdavi et al., 2007 <doi:10.1016/j.amc.2006.11.033>), Moth-flame Optimization (Mirjalili, 2015 <doi:10.1016/j.knosys.2015.07.006>), Particle Swarm Optimization (Kennedy et al., 2001 ISBN:1558605959), Simulated Annealing (Kirkpatrick et al., 1983 <doi:10.1126/science.220.4598.671>), Whale Optimization Algorithm (Mirjalili and Lewis, 2016 <doi:10.1016/j.advengsoft.2016.01.008>). EmiR can be used not only for unconstrained optimization problems, but also in presence of inequality constrains, and variables restricted to be integers.
Estimation of the components of an ETAS (Epidemic Type Aftershock Sequence) model for earthquake description. Non-parametric background seismicity can be estimated through FLP (Forward Likelihood Predictive). New version 2.0.0: covariates have been introduced to explain the effects of external factors on the induced seismicity; the parametrization has been changed; Chiodi, Adelfio (2017)<doi:10.18637/jss.v076.i03>.
This package provides simple functions to create constraints for small test assembly problems (e.g. van der Linden (2005, ISBN: 978-0-387-29054-6)) using sparse matrices. Currently, GLPK', lpSolve', Symphony', and Gurobi are supported as solvers. The gurobi package is not available from any mainstream repository; see <https://www.gurobi.com/downloads/>.
Pacote para a analise de experimentos havendo duas variaveis explicativas quantitativas e uma variavel dependente quantitativa. Os experimentos podem ser sem repeticoes ou com delineamento estatistico. Sao ajustados 12 modelos de regressao multipla e plotados graficos de superficie resposta (Hair JF, 2016) <ISBN:13:978-0138132637>.(Package for the analysis of experiments having two explanatory quantitative variables and one quantitative dependent variable. The experiments can be without repetitions or with a statistical design. Twelve multiple regression models are fitted and response surface graphs are plotted (Hair JF, 2016) <ISBN:13:978-0138132637>).
The goal of this package is to provide an easy to use, fast and scalable exhaustive search framework. Exhaustive feature selections typically require a very large number of models to be fitted and evaluated. Execution speed and memory management are crucial factors here. This package provides solutions for both. Execution speed is optimized by using a multi-threaded C++ backend, and memory issues are solved by by only storing the best results during execution and thus keeping memory usage constant.
Dynamic and Interactive Maps with R, powered by leaflet <https://leafletjs.com>. evolMap generates a web page with interactive and dynamic maps to which you can add geometric entities (points, lines or colored geographic areas), and/or markers with optional links between them. The dynamic ability of these maps allows their components to evolve over a continuous period of time or by periods.
Use structural equation modeling to estimate average and conditional effects of a treatment variable on an outcome variable, taking into account multiple continuous and categorical covariates.
The peak fitting of spectral data is performed by using the frame work of EM algorithm. We adapted the EM algorithm for the peak fitting of spectral data set by considering the weight of the intensity corresponding to the measurement energy steps (Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019, 2021 and 2023) <doi:10.1080/14686996.2019.1620123>, <doi:10.1080/27660400.2021.1899449> <doi:10.1080/27660400.2022.2159753>. The package efficiently estimates the parameters of Gaussian mixture model during iterative calculation between E-step and M-step, and the parameters are converged to a local optimal solution. This package can support the investigation of peak shift with two advantages: (1) a large amount of data can be processed at high speed; and (2) stable and automatic calculation can be easily performed.
Analysis of trade in value added with international input-output tables. Includes commands for easy data extraction, matrix manipulation, decomposition of value added in gross exports and calculation of value added indicators, with full geographical and sector customization. Decomposition methods include Borin and Mancini (2023) <doi:10.1080/09535314.2022.2153221>, Miroudot and Ye (2021) <doi:10.1080/09535314.2020.1730308>, Wang et al. (2013) <https://econpapers.repec.org/paper/nbrnberwo/19677.htm> and Koopman et al. (2014) <doi:10.1257/aer.104.2.459>.
This package provides a set of functions for computing expected permutation matrices given a matrix of likelihoods for each individual assignment. It has been written to accompany the forthcoming paper Computing expectations and marginal likelihoods for permutations'. Publication details will be updated as soon as they are finalized.
Rolling and expanding window approaches to assessing abundance based early warning signals, non-equilibrium resilience measures, and machine learning. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Griffen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-021-87839-y> for methodological details. Graphical presentation of the outputs are also provided for clear and publishable figures. Visit the EWSmethods website for more information, and tutorials.
Generates interactive circle plots with the nodes around the circumference and linkages between the connected nodes using hierarchical edge bundling via the D3 JavaScript library. See <http://d3js.org/> for more information on D3.
Application of Ensemble Empirical Mode Decomposition and its variant based Support Vector regression model for univariate time series forecasting. For method details see Das (2020).<http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
The Delphi Epidata API provides real-time access to epidemiological surveillance data for influenza, COVID-19', and other diseases for the USA at various geographical resolutions, both from official government sources such as the Center for Disease Control (CDC) and Google Trends and private partners such as Facebook and Change Healthcare'. It is built and maintained by the Carnegie Mellon University Delphi research group. To cite this API: David C. Farrow, Logan C. Brooks, Aaron Rumack', Ryan J. Tibshirani', Roni Rosenfeld (2015). Delphi Epidata API. <https://github.com/cmu-delphi/delphi-epidata>.
Dissimilarity-based analysis functions including ordination and Mantel test functions, intended for use with spatial and community ecological data. The original package description is in Goslee and Urban (2007) <doi:10.18637/jss.v022.i07>, with further statistical detail in Goslee (2010) <doi:10.1007/s11258-009-9641-0>.
This package provides a collection of fast and flexible functions for analyzing omics data in observational studies. Multiple different approaches for integrating multiple environmental/genetic factors, omics data, and/or phenotype data are implemented. This includes functions for performing omics wide association studies with one or more variables of interest as the exposure or outcome; a function for performing a meet in the middle analysis for linking exposures, omics, and outcomes (as described by Chadeau-Hyam et al., (2010) <doi:10.3109/1354750X.2010.533285>); and a function for performing a mixtures analysis across all omics features using quantile-based g-Computation (as described by Keil et al., (2019) <doi:10.1289/EHP5838>).