Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides API access to data from the U.S. Energy Information Administration ('EIA') <https://www.eia.gov/>. Use of the EIA's API and this package requires a free API key obtainable at <https://www.eia.gov/opendata/register.php>. This package includes functions for searching the EIA data directory and returning time series and geoset time series datasets. Datasets returned by these functions are provided by default in a tidy format, or alternatively, in more raw formats. It also offers helper functions for working with EIA date strings and time formats and for inspecting different summaries of series metadata. The package also provides control over API key storage and caching of API request results.
Package EDISON (Estimation of Directed Interactions from Sequences Of Non-homogeneous gene expression) runs an MCMC simulation to reconstruct networks from time series data, using a non-homogeneous, time-varying dynamic Bayesian network. Networks segments and changepoints are inferred concurrently, and information sharing priors provide a reduction of the inference uncertainty.
This package performs analysis of polynomial regression in simple designs with quantitative treatments.
Perform analysis of variance and other important complementary analyses. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data.
Genotyping the population using next generation sequencing data is essentially important for the rare variant detection. In order to distinguish the genomic structural variation from sequencing error, we propose a statistical model which involves the genotype effect through a latent variable to depict the distribution of non-reference allele frequency data among different samples and different genome loci, while decomposing the sequencing error into sample effect and positional effect. An ECM algorithm is implemented to estimate the model parameters, and then the genotypes and SNPs are inferred based on the empirical Bayes method.
Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <doi:10.48550/arXiv.1611.09477> or nonlinear models <doi:10.48550/arXiv.1604.06737> can be used. There are also functions for dimension reduction and other approaches.
Import gaze data from edf files generated by the SR Research <https://www.sr-research.com/> EyeLink eye tracker. Gaze data, both recorded events and samples, is imported per trial. The package allows to extract events of interest, such as saccades, blinks, etc. as well as recorded variables and custom events (areas of interest, triggers) into separate tables. The package requires EDF API library that can be obtained at <https://www.sr-research.com/support/>.
This package provides tools to download and manipulate the Permanent Household Survey from Argentina (EPH is the Spanish acronym for Permanent Household Survey). e.g: get_microdata() for downloading the datasets, get_poverty_lines() for downloading the official poverty baskets, calculate_poverty() for the calculation of stating if a household is in poverty or not, following the official methodology. organize_panels() is used to concatenate observations from different periods, and organize_labels() adds the official labels to the data. The implemented methods are based on INDEC (2016) <http://www.estadistica.ec.gba.gov.ar/dpe/images/SOCIEDAD/EPH_metodologia_22_pobreza.pdf>. As this package works with the argentinian Permanent Household Survey and its main audience is from this country, the documentation was written in Spanish.
Automatic generation of quizzes or individual questions for learnr tutorials based on R/exams exercises.
This package implements various quality evaluation statistics to assess the value of plant germplasm core collections using qualitative and quantitative phenotypic trait data according to Odong et al. (2015) <doi:10.1007/s00122-012-1971-y>.
Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting. Documentation about errors is provided in the paper by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in this package as a vignette; see citation("errors") for details.
Analysis of elliptical tubes with applications in biological modeling. The package is based on the references: Taheri, M., Pizer, S. M., & Schulz, J. (2024) "The Mean Shape under the Relative Curvature Condition." Journal of Computational and Graphical Statistics <doi:10.1080/10618600.2025.2535600> and arXiv <doi:10.48550/arXiv.2404.01043>. Mohsen Taheri Shalmani (2024) "Shape Statistics via Skeletal Structures", PhD Thesis, University of Stavanger, Norway <doi:10.13140/RG.2.2.34500.23685>. Key features include constructing discrete elliptical tubes, calculating transformations, validating structures under the Relative Curvature Condition (RCC), computing means, and generating simulations. Supports intrinsic and non-intrinsic mean calculations and transformations, size estimation, plotting, and random sample generation based on a reference tube. The intrinsic approach relies on the interior path of the original non-convex space, incorporating the RCC, while the non-intrinsic approach uses a basic robotic arm transformation that disregards the RCC.
Bayesian Model Averaging to create probabilistic forecasts from ensemble forecasts and weather observations <https://stat.uw.edu/sites/default/files/files/reports/2007/tr516.pdf>.
Generates feature matrix outputs from R object inputs using a variety of expansion functions. The generated feature matrices have applications as inputs for a variety of machine learning algorithms. The expansion functions are based on coercing the input to a matrix, treating the columns as features and converting individual columns or combinations into blocks of columns. Currently these include expansion of columns by efficient sparse embedding by vectors of lags, quadratic expansion into squares and unique products, powers by vectors of degree, vectors of orthogonal polynomials functions, and block random affine projection transformations (RAPTs). The transformations are magrittr- and cbind-friendly, and can be used in a building block fashion. For instance, taking the cos() of the output of the RAPT transformation generates a stationary kernel expansion via Bochner's theorem, and this expansion can then be cbind-ed with other features. Additionally, there are utilities for replacing features, removing rows with NAs, creating matrix samples of a given distribution, a simple wrapper for LASSO with CV, a Freeman-Tukey transform, generalizations of the outer function, matrix size-preserving discrete difference by row, plotting, etc.
This package provides a system for batch-marking data analysis to estimate survival probabilities, capture probabilities, and enumerate the population abundance for both marked and unmarked individuals. The estimation of only marked individuals can be achieved through the batchMarkOptim() function. Similarly, the combined marked and unmarked can be achieved through the batchMarkUnmarkOptim() function. The algorithm was also implemented for the hidden Markov model encapsulated in batchMarkUnmarkOptim() to estimate the abundance of both marked and unmarked individuals in the population. The package is based on the paper: "Hidden Markov Models for Extended Batch Data" of Cowen et al. (2017) <doi:10.1111/biom.12701>.
This package provides a shiny-based front end (the ExPanD app) and a set of functions for exploratory data analysis. Run as a web-based app, ExPanD enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of ExPanD and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use ExPanD and/or the functions of this package.
Bayesian estimation of spatial weight matrices in spatial econometric panel models. Allows for estimation of spatial autoregressive (SAR), spatial error (SEM), spatial Durbin (SDM), spatial error Durbin (SDEM) and spatially lagged explanatory variable (SLX) type specifications featuring an unknown spatial weight matrix. Methodological details are given in Krisztin and Piribauer (2022) <doi:10.1080/17421772.2022.2095426>.
Estimation of the sample univariate, cross and return time extremograms. The package can also adds empirical confidence bands to each of the extremogram plots via a permutation procedure under the assumption that the data are independent. Finally, the stationary bootstrap allows us to construct credible confidence bands for the extremograms.
Coalescent-Based Simulation of Ecological Communities as proposed by Munoz et al. (2018) <doi:10.1111/2041-210X.12918>. The package includes a tool for estimating parameters of community assembly by using Approximate Bayesian Computation.
In personalized medicine, one wants to know, for a given patient and his or her outcome for a predictor (pre-treatment variable), how likely it is that a treatment will be more beneficial than an alternative treatment. This package allows for the quantification of the predictive causal association (i.e., the association between the predictor variable and the individual causal effect of the treatment) and related metrics. Part of this software has been developed using funding provided from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
Fits extreme value mixture models, which are models for tails not requiring selection of a threshold, for continuous data. It includes functions for model comparison, estimation of quantity of interest in extreme value analysis and plotting. Reference: CN Behrens, HF Lopes, D Gamerman (2004) <doi:10.1191/1471082X04st075oa>. FF do Nascimento, D. Gamerman, HF Lopes <doi:10.1007/s11222-011-9270-z>.
This package provides methods for constructing confidence or credible regions for exceedance sets and contour lines.
Wrapper for the ggplot2 package that creates a variety of common charts (e.g. bar, line, area, ROC, waterfall, pie) while aiming to reduce typing.
This package implements methods for functional data analysis based on the epigraph and hypograph indices. These methods transform functional datasets, whether in one or multiple dimensions, into multivariate datasets. The transformation involves applying the epigraph, hypograph, and their modified versions to both the original curves and their first and second derivatives. The calculation of these indices is tailored to the dimensionality of the functional dataset, with special considerations for dependencies between dimensions in multidimensional cases. This approach extends traditional multivariate data analysis techniques to the functional data setting. A key application of this package is the EHyClus method, which enhances clustering analysis for functional data across one or multiple dimensions using the epigraph and hypograph indices. See Pulido et al. (2023) <doi:10.1007/s11222-023-10213-7> and Pulido et al. (2024) <doi:10.48550/arXiv.2307.16720>.