Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
A workflow is a combination of a model and preprocessors (e.g, a formula, recipe, etc.). In order to try different combinations of these, an object can be created that contains many workflows. There are functions to create workflows en masse as well as training them and visualizing the results.
Learn vector representations of words by continuous bag of words and skip-gram implementations of the word2vec algorithm. The techniques are detailed in the paper "Distributed Representations of Words and Phrases and their Compositionality" by Mikolov et al. (2013), available at <arXiv:1310.4546>.
This package provides resampling procedures to assess the stability of selected variables with additional finite sample error control for high-dimensional variable selection procedures such as Lasso or boosting. Both, standard stability selection (Meinshausen & Buhlmann, 2010) and complementary pairs stability selection with improved error bounds (Shah & Samworth, 2013) are implemented. The package can be combined with arbitrary user specified variable selection approaches.
This package provides tools to compares k samples using the Anderson-Darling test, Kruskal-Wallis type tests with different rank score criteria, Steel's multiple comparison test, and the Jonckheere-Terpstra (JT) test. It computes asymptotic, simulated or (limited) exact P-values, all valid under randomization, with or without ties, or conditionally under random sampling from populations, given the observed tie pattern. Except for Steel's test and the JT test it also combines these tests across several blocks of samples.
This package provides the Open Source Geometry Engine (GEOS) as a C API that can be used to write high-performance C and C++ geometry operations using R as an interface. Headers are provided to make linking to and using these functions from C++ code as easy and as safe as possible. This package contains an internal copy of the GEOS library to guarantee the best possible consistency on multiple platforms.
This package provides tools to compute and represent gene set enrichment or depletion from your data based on pre-saved maps from the Atlas of Cancer Signalling Networks (ACSN) or user imported maps. The gene set enrichment can be run with hypergeometric test or Fisher exact test, and can use multiple corrections. Visualization of data can be done either by barplots or heatmaps.
This package provides functions for feed-forward neural networks with a single hidden layer, and for multinomial log-linear models.
This package provides tools for exploratory data analysis and data visualization of biological sequence (DNA and protein) data. It also includes utilities for sequence data management under the ACNUC system.
Look up the username and full name of the current user, the current user's email address and GitHub username, using various sources of system and configuration information.
This package implements various estimators of entropy, such as the shrinkage estimator by Hausser and Strimmer, the maximum likelihood and the Millow-Madow estimator, various Bayesian estimators, and the Chao-Shen estimator. It also offers an R interface to the NSB estimator. Furthermore, it provides functions for estimating Kullback-Leibler divergence, chi-squared, mutual information, and chi-squared statistic of independence. In addition there are functions for discretizing continuous random variables.
The pls package implements multivariate regression methods: Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), and Canonical Powered Partial Least Squares (CPPLS). It supports:
several algorithms: the traditional orthogonal scores (NIPALS) PLS algorithm, kernel PLS, wide kernel PLS, Simpls, and PCR through
svdmulti-response models (or PLS2)
flexible cross-validation
Jackknife variance estimates of regression coefficients
extensive and flexible plots: scores, loadings, predictions, coefficients, (R)MSEP, R², and correlation loadings
formula interface, modelled after
lm(), with methods for predict, print, summary, plot, update, etc.extraction functions for coefficients, scores, and loadings
MSEP, RMSEP, and R² estimates
multiplicative scatter correction (MSC)
This package provides an API for efficient .hic file data extraction with programmatic matrix access. It doesn't store the pointer data for all the matrices, only the one queried, and currently it only supports matrices.
This package provides convenience functions for data preparation and modeling often used in analytical customer relationship management (aCRM).
This package provides a convenience wrapper that uses the rmarkdown package to render small snippets of code to target formats that include both code and output. The goal is to encourage the sharing of small, reproducible, and runnable examples on code-oriented websites or email. reprex also extracts clean, runnable R code from various common formats, such as copy/paste from an R session.
This package extends the functionality of ggplot2, providing the capability to plot ternary diagrams for (a subset of) the ggplot2 geometries. Additionally, ggtern has implemented several new geometries which are unavailable to the standard ggplot2 release.
This package provides a small collection of interesting and educational machine learning data sets which are used as examples in the mlr3 book Applied machine learning using mlr3 in R https://mlr3book.mlr-org.com, the use case gallery https://mlr3gallery.mlr-org.com, or in other examples. All data sets are properly preprocessed and ready to be analyzed by most machine learning algorithms. Data sets are automatically added to the dictionary of tasks if mlr3 is loaded.
This package provides tools to identify and read BMP, JPEG, PNG, and TIFF format bitmap images. Identification defaults to the use of the magic number embedded in the file rather than the file extension.
This package contains the function ggsurvplot() for easily drawing beautiful and 'ready-to-publish' survival curves with the 'number at risk' table and 'censoring count plot'. Other functions are also available to plot adjusted curves for Cox model and to visually examine Cox model assumptions.
This package provides an R interface to Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen and Guestrin (2016). The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.
iheatmapr is an R package for building complex, interactive heatmaps using modular building blocks. "Complex" heatmaps are heatmaps in which subplots along the rows or columns of the main heatmap add more information about each row or column. For example, a one column additional heatmap may indicate what group a particular row or column belongs to. Complex heatmaps may also include multiple side by side heatmaps which show different types of data for the same conditions. Interactivity can improve complex heatmaps by providing tooltips with information about each cell and enabling zooming into interesting features. iheatmapr uses the plotly library for interactivity.
This package provides template functions to assist in building friendly R packages that praise their users.
Content-preserving transformations transformations of PDF files such as split, combine, and compress. This package interfaces directly to the qpdf C++ API and does not require any command line utilities. Note that qpdf does not read actual content from PDF files: to extract text and data you need the pdftools package.
This package provides a cross-platform interface to file system operations, built on top of the libuv C library.
This package provides an implementation of a data cube extracted out of dplyr for backward compatibility.