Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a toolset for generating Ecological Limit Function (ELF) models and evaluating potential species loss resulting from flow change, based on the elfgen framework. ELFs describe the relation between aquatic species richness (fish or benthic macroinvertebrates) and stream size characteristics (streamflow or drainage area). Journal publications are available outlining framework methodology (Kleiner et al. (2020) <doi:10.1111/1752-1688.12876>) and application (Rapp et al. (2020) <doi:10.1111/1752-1688.12877>).
This package provides a function to query and extract data from the US Energy Information Administration ('EIA') API V2 <https://www.eia.gov/opendata/>. The EIA API provides a variety of information, in a time series format, about the energy sector in the US. The API is open, free, and requires an access key and registration at <https://www.eia.gov/opendata/>.
The basic use of this package is with 3 sequential functions. First to generate a cell mean matrix. In case of a repeated measurements design also generate correlation and covariance matrices. This is followed by iterative experiment simulation. Finally, power is calculated from the simulated data. Features that may be considered in the model are interaction, measure correlation, non-normal and unbalanced designs distributions.
This package contains logic for computing sparse principal components via the EESPCA method, which is based on an approximation of the eigenvector/eigenvalue identity. Includes logic to support execution of the TPower and rifle sparse PCA methods, as well as logic to estimate the sparsity parameters used by EESPCA, TPower and rifle via cross-validation to minimize the out-of-sample reconstruction error. H. Robert Frost (2021) <doi:10.1080/10618600.2021.1987254>.
Supports designing efficient discrete choice experiments (DCEs). Experimental designs can be formed on the basis of orthogonal arrays or search methods for optimal designs (Federov or mixed integer programs). Various methods for converting these experimental designs into a discrete choice experiment. Many efficiency measures! Draws from literature of Kuhfeld (2010) and Street et. al (2005) <doi:10.1016/j.ijresmar.2005.09.003>.
This package provides a complete rewrite and reimagining of bakR (see Vock et al. (2025) <doi:10.1371/journal.pcbi.1013179>). Designed to support a wide array of analyses of nucleotide recoding RNA-seq (NR-seq) datasets of any type, including TimeLapse-seq/SLAM-seq/TUC-seq, Start-TimeLapse-seq (STL-seq), TT-TimeLapse-seq (TT-TL-seq), and subcellular NR-seq. EZbakR extends standard NR-seq standard NR-seq mutational modeling to support multi-label analyses (e.g., 4sU and 6sG dual labeling), and implements an improved hierarchical model to better account for transcript-to-transcript variance in metabolic label incorporation. EZbakR also generalized dynamical systems modeling of NR-seq data to support analyses of premature mRNA processing and flow between subcellular compartments. Finally, EZbakR implements flexible and well-powered comparative analyses of all estimated parameters via design matrix-specified generalized linear modeling.
This is the course package for the exercise portion of the "Ecological Data Collection and Processing" course.
Some utility functions for validation and data manipulation. These functions can be helpful to reduce internal codes everywhere in package development.
Reproducibility assessment is essential in extracting reliable scientific insights from high-throughput experiments. While the Irreproducibility Discovery Rate (IDR) method has been instrumental in assessing reproducibility, its standard implementation is constrained to handling only two replicates. Package eCV introduces an enhanced Coefficient of Variation (eCV) metric to assess the likelihood of omic features being reproducible. Additionally, it offers alternatives to the Irreproducible Discovery Rate (IDR) calculations for multi-replicate experiments. These tools are valuable for analyzing high-throughput data in genomics and other omics fields. The methods implemented in eCV are described in Gonzalez-Reymundez et al., (2023) <doi:10.1101/2023.12.18.572208>.
Generation of bioclimatic rasters that are complementary to the typical 19 bioclim variables.
Computes various effect sizes of the difference, their variance, and confidence interval. This package treats Cohen's d, Hedges d, biased/unbiased c (an effect size between a mean and a constant) and e (an effect size between means without assuming the variance equality).
This package performs hypothesis testing for general block designs with empirical likelihood. The core computational routines are implemented using the Eigen C++ library and RcppEigen interface, with OpenMP for parallel computation. Details of the methods are given in Kim, MacEachern, and Peruggia (2023) <doi:10.1080/10485252.2023.2206919>. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.
This package provides tools to download data from the Eurostat database <https://ec.europa.eu/eurostat> together with search and manipulation utilities.
We introduced a novel ensemble-based explainable machine learning model using Model Confidence Set (MCS) and two stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm. The model combined the predictive capabilities of different machine-learning models and integrates the interpretability of explainability methods. To develop the proposed algorithm, a two-stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) framework was employed. The package has been developed using the algorithm of Paul et al. (2023) <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.
This package provides an interface to e-Stat API, the one-stop service for official statistics of the Japanese government.
Easily compute education inequality measures and the distribution of educational attainments for any group of countries, using the data set developed in Jorda, V. and Alonso, JM. (2017) <DOI:10.1016/j.worlddev.2016.10.005>. The package offers the possibility to compute not only the Gini index, but also generalized entropy measures for different values of the sensitivity parameter. In particular, the package includes functions to compute the mean log deviation, which is more sensitive to the bottom part of the distribution; the Theilâ s entropy measure, equally sensitive to all parts of the distribution; and finally, the GE measure when the sensitivity parameter is set equal to 2, which gives more weight to differences in higher education. The decomposition of these measures in the components between-country and within-country inequality is also provided. Two graphical tools are also provided, to analyse the evolution of the distribution of educational attainments: The cumulative distribution function and the Lorenz curve.
This package implements stochastic simulations of community assembly (ecological diversification) using customizable ecospace frameworks (functional trait spaces). Provides a wrapper to calculate common ecological disparity and functional ecology statistical dynamics as a function of species richness. Functions are written so they will work in a parallel-computing environment.
Equating of multiple forms using Item Response Theory (IRT) methods. See Battauz (2025) <doi:10.18637/jss.v115.i11> for a detailed description of the package. See Battauz M. (2017) <doi:10.1007/s11336-016-9517-x>, Battauz and Leoncio (2023) <doi:10.1177/01466216231151702> and Haberman S. J. (2009) <doi:10.1002/j.2333-8504.2009.tb02197.x>) for the methods to link multiple test forms.
Conducts inference in statistical models for extreme values (de Carvalho et al (2012), <doi:10.1080/03610926.2012.709905>; de Carvalho and Davison (2014), <doi:10.1080/01621459.2013.872651>; Einmahl et al (2016), <doi:10.1111/rssb.12099>).
This package provides tools for automatic model selection and diagnostics for Climate and Environmental data. In particular the envcpt() function does automatic model selection between a variety of trend, changepoint and autocorrelation models. The envcpt() function should be your first port of call.
Computation of direct, chain and average (bisector) equating coefficients with standard errors using Item Response Theory (IRT) methods for dichotomous items (Battauz (2013) <doi:10.1007/s11336-012-9316-y>, Battauz (2015) <doi:10.18637/jss.v068.i07>). Test scoring can be performed by true score equating and observed score equating methods. DIF detection can be performed using a Wald-type test (Battauz (2019) <doi:10.1007/s10260-018-00442-w>). The package includes tests to assess the stability of the equating transformations (Battauz(2022) <doi:10.1111/stan.12277>).
This package provides a fast, flexible tool for generating disease surveillance reports from data exported from EpiTrax', a central repository for epidemiological data used by public health officials. It provides functions to manipulate EpiTrax datasets, tailor reports to internal or public use, and export reports in CSV, Excel xlsx', or PDF formats.
This package contains utilities and functions for the cleaning, processing and management of patient level public health data for surveillance and analysis held by the UK Health Security Agency, UKHSA.
The epilogi variable selection algorithm is implemented for the case of continuous response and predictor variables. The relevant paper is: Lakiotaki K., Papadovasilakis Z., Lagani V., Fafalios S., Charonyktakis P., Tsagris M. and Tsamardinos I. (2023). "Automated machine learning for Genome Wide Association Studies". Bioinformatics, 39(9): btad545. <doi:10.1093/bioinformatics/btad545>.