Analytically calculates the operating characteristics of single-stage and two-stage basket trials with equal sample sizes using the power prior design by Baumann et al. (2024) <doi:10.48550/arXiv.2309.06988> and the design by Fujikawa et al. (2020) <doi:10.1002/bimj.201800404>.
Adjusts the loglikelihood of common econometric models for clustered data based on the estimation process suggested in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>, using the chandwich package <https://cran.r-project.org/package=chandwich>, and provides convenience functions for inference on the adjusted models.
This package provides a wrapper for the U.S. Census Bureau APIs that returns data frames of Census data and metadata. Available datasets include the Decennial Census, American Community Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, Population Estimates and Projections, and more.
This package implements the nonparametric moving sum procedure for detecting changes in the joint characteristic function (NP-MOJO) for multiple change point detection in multivariate time series. See McGonigle, E. T., Cho, H. (2025) <doi:10.1093/biomet/asaf024> for description of the NP-MOJO methodology.
Statistical hypothesis testing using the Delta method as proposed by Deng et al. (2018) <doi:10.1145/3219819.3219919>. This method replaces the standard variance estimation formula in the Z-test with an approximate formula derived via the Delta method, which can account for within-user correlation.
Solving large scale distance weighted discrimination. The main algorithm is a symmetric Gauss-Seidel based alternating direction method of multipliers (ADMM) method. See Lam, X.Y., Marron, J.S., Sun, D.F., and Toh, K.C. (2018) <doi:10.48550/arXiv.1604.05473> for more details.
This package provides a suite of methods for detecting influential subjects in longitudinal datasets, particularly when observations occur at irregular time points. The methods identify individuals whose response trajectories deviate significantly from the population pattern, enabling detection of anomalies or subjects exerting undue influence on model outcomes.
Connection to the Fitbit Web API <https://dev.fitbit.com/build/reference/web-api/> by including ggplot2 Visualizations, Leaflet and 3-dimensional Rayshader Maps. The 3-dimensional Rayshader Map requires the installation of the CopernicusDEM R package which includes the 30- and 90-meter elevation data.
Miscellaneous utilities, tools and helper functions for finding and searching files on disk, searching for and removing R objects from the workspace. Does not import or depend on any third party package, but on core R only (i.e. it may depend on packages with priority base').
Use R to access to the FMP Cloud API <https://fmpcloud.io/> and Financial Modeling Prep API <https://financialmodelingprep.com/developer/docs/>. Data available includes stock prices, market indexes, company fundamentals, 13F holdings data, and much more. A valid API token must be set to enable functions.
This package provides classes and functions for working with IP (Internet Protocol) addresses and networks, inspired by the Python ipaddress module. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces. It is specifically designed to work well with the tidyverse'.
This package provides a unified data layer for single-cell, spatial and bulk T-cell and B-cell immune receptor repertoire data. Think AnnData or SeuratObject, but for AIRR data, a.k.a. Adaptive Immune Receptor Repertoire, VDJ-seq, RepSeq, or VDJ sequencing data.
This is a set of simple utility functions to perform mutual conversion between the current Japanese calendar system that Wareki, the old Japanese calendar system that the Kyureki calendar and the Julian and Gregorian calendar. To calculate each calendar method, it converts to the Julian Day Number.
This package provides tools for keeping track of information, named "keys", about rows of data frame like objects. This is done by creating special attribute "keys" which is updated after every change in rows (subsetting, ordering, etc.). This package is designed to work tightly with dplyr package.
Exact and approximation algorithms for variable-subset selection in ordinary linear regression models. Either compute all submodels with the lowest residual sum of squares, or determine the single-best submodel according to a pre-determined statistical criterion. Hofmann et al. (2020) <doi:10.18637/jss.v093.i03>.
Clustering of data under a non-ignorable missingness mechanism. Clustering is achieved by a semi-parametric mixture model and missingness is managed by using the pattern-mixture approach. More details of the approach are available in Du Roy de Chaumaray et al. (2020) <arXiv:2009.07662>.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Wrapper around the Unix join facility which is more efficient than the built-in R routine merge(). The package enables the joining of multiple files on disk at once. The files can be compressed and various filters can be deployed before joining. Compiles only under Unix.
Different examples and methods for testing (including different proposals described in Ameijeiras-Alonso et al., 2019 <DOI:10.1007/s11749-018-0611-5>) and exploring (including the mode tree, mode forest and SiZer) the number of modes using nonparametric techniques <DOI:10.18637/jss.v097.i09>.
Makes it easy to display descriptive information on a data set. Getting an easy overview of a data set by displaying and visualizing sample information in different tables (e.g., time and scope conditions). The package also provides publishable LaTeX code to present the sample information.
Assessment of habitat selection by means of the permutation-based combination of sign tests (Fattorini et al., 2014 <DOI:10.1007/s10651-013-0250-7>). To exemplify the application of this procedure, habitat selection is assessed for a population of European Brown Hares settled in central Italy.
It provides users with functions to parse International Phonetic Alphabet (IPA) transcriptions into individual phones (tokenisation) based on default IPA symbols and optional user specified multi-character phones. The tokenised transcriptions can be used for obtaining counts of phones or for searching for words matching phonetic patterns.
Validate data.frames against schemas to ensure that data matches expectations. Define schemas using tidyselect and predicate functions for type consistency, nullability, and more. Schema failure messages can be tailored for non-technical users and are ideal for user-facing applications such as in shiny or plumber'.
This package performs simulation and inference of diffusion processes on circle. Stochastic correlation models based on circular diffusion models are provided. For details see Majumdar, S. and Laha, A.K. (2024) "Diffusion on the circle and a stochastic correlation model" <doi:10.48550/arXiv.2412.06343>.