Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Infer the adjacency matrix of a network from time course data using an empirical Bayes estimation procedure based on Dynamic Bayesian Networks.
Basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both. It follows the bias analysis methods and examples from the book by Fox M.P., MacLehose R.F., and Lash T.L. "Applying Quantitative Bias Analysis to Epidemiologic Data, second ed.", ('Springer', 2021).
This package provides a set of procedures for estimating risks related to extreme events via risk measures such as Expectile, Value-at-Risk, etc. is provided. Estimation methods for univariate independent observations and temporal dependent observations are available. The methodology is extended to the case of independent multidimensional observations. The statistical inference is performed through parametric and non-parametric estimators. Inferential procedures such as confidence intervals, confidence regions and hypothesis testing are obtained by exploiting the asymptotic theory. Adapts the methodologies derived in Padoan and Stupfler (2022) <doi:10.3150/21-BEJ1375>, Davison et al. (2023) <doi:10.1080/07350015.2022.2078332>, Daouia et al. (2018) <doi:10.1111/rssb.12254>, Drees (2000) <doi:10.1214/aoap/1019487617>, Drees (2003) <doi:10.3150/bj/1066223272>, de Haan and Ferreira (2006) <doi:10.1007/0-387-34471-3>, de Haan et al. (2016) <doi:10.1007/s00780-015-0287-6>, Padoan and Rizzelli (2024) <doi:10.3150/23-BEJ1668>, Daouia et al. (2024) <doi:10.3150/23-BEJ1632>.
Modular implementation of the Differential Evolution algorithm for experimenting with different types of operators.
This package provides statistical methods for estimating bivariate dependency (correlation) from marginal summary statistics across multiple studies. The package supports three modules: (1) bivariate correlation estimation for binary outcomes, (2) bivariate correlation estimation for continuous outcomes, and (3) estimation of component-wise means and variances under a conditional two-component Gaussian mixture model for a continuous variable stratified by a binary class label. These methods enable privacy-preserving joint estimation when individual-level data are unavailable. The approaches are detailed in Shang, Tsao, and Zhang (2025a) <doi:10.48550/arXiv.2505.03995> and Shang, Tsao, and Zhang (2025b) <doi:10.48550/arXiv.2508.02057>.
An implementation of Extreme Bounds Analysis (EBA), a global sensitivity analysis that examines the robustness of determinants in regression models. The package supports both Leamer's and Sala-i-Martin's versions of EBA, and allows users to customize all aspects of the analysis.
This package provides a set of extensions for the ergm package to fit weighted networks whose edge weights are ranks. See Krivitsky and Butts (2017) <doi:10.1177/0081175017692623> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
This package provides a wrapper of different methods from Linear Algebra for the equations introduced in The Atlas of Economic Complexity and related literature. This package provides standard matrix and graph output that can be used seamlessly with other packages. See <doi:10.21105/joss.01866> for a summary of these methods and its evolution in literature.
This package implements three complementary pipelines for causal analysis on macroeconomic time series: (1) Error-Correction Models with Multivariate Adaptive Regression Splines (ECM-MARS), (2) Bayesian Structural Time Series (BSTS), and (3) Bayesian GLM with AR(1) errors validated with Leave-Future-Out (LFO). Heavy backends (Stan) are optional and never used in examples or tests.
Computing economic analysis in civil infrastructure and ecosystem restoration projects is a typical activity. This package contains Standard cost engineering and engineering economics methods that are applied to convert between present, future, and annualized costs. Newnan D. (2020) <ISBN 9780190931919> â Engineering Economic Analysisâ .
Extends the ergm.multi packages from the Statnet suite to fit (temporal) exponential-family random graph models for signed networks. The framework models positive and negative ties as interdependent, which allows estimation and testing of structural balance theory. The package also includes options for descriptive summaries, visualization, and simulation of signed networks. See Krivitsky, Koehly, and Marcum (2020) <doi:10.1007/s11336-020-09720-7> and Fritz, C., Mehrl, M., Thurner, P. W., & Kauermann, G. (2025) <doi:10.1017/pan.2024.21>.
We implement (or re-implements in R) a variety of statistical tools. They are focused on non-parametric two-sample (or k-sample) distribution comparisons in the univariate or multivariate case. See the vignette for more info.
Easy and rapid quantitative estimation of small terrestrial ectotherm temperature regulation effectiveness in R. ectotemp is built on classical formulas that evaluate temperature regulation by means of various indices, inaugurated by Hertz et al. (1993) <doi: 10.1086/285573>. Options for bootstrapping and permutation testing are included to test hypotheses about divergence between organisms, species or populations.
There is no ophthalmic researcher who has not had headaches from the handling of visual acuity entries. Different notations, untidy entries. This shall now be a matter of the past. Eye makes it as easy as pie to work with VA data - easy cleaning, easy conversion between Snellen, logMAR, ETDRS letters, and qualitative visual acuity shall never pester you again. The eye package automates the pesky task to count number of patients and eyes, and can help to clean data with easy re-coding for right and left eyes. It also contains functions to help reshaping eye side specific variables between wide and long format. Visual acuity conversion is based on Schulze-Bonsel et al. (2006) <doi:10.1167/iovs.05-0981>, Gregori et al. (2010) <doi:10.1097/iae.0b013e3181d87e04>, Beck et al. (2003) <doi:10.1016/s0002-9394(02)01825-1> and Bach (2007) <https://michaelbach.de/sci/acuity.html>.
The EUNIS habitat classification is a comprehensive pan-European system for habitat identification <https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1>. This is an R data package providing the EUNIS classification system. The classification is hierarchical and covers all types of habitats from natural to artificial, from terrestrial to freshwater and marine. The habitat types are identified by specific codes, names and descriptions and come with schema crosswalks to other habitat typologies.
The peak fitting of spectral data is performed by using the frame work of EM algorithm. We adapted the EM algorithm for the peak fitting of spectral data set by considering the weight of the intensity corresponding to the measurement energy steps (Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019, 2021 and 2023) <doi:10.1080/14686996.2019.1620123>, <doi:10.1080/27660400.2021.1899449> <doi:10.1080/27660400.2022.2159753>. The package efficiently estimates the parameters of Gaussian mixture model during iterative calculation between E-step and M-step, and the parameters are converged to a local optimal solution. This package can support the investigation of peak shift with two advantages: (1) a large amount of data can be processed at high speed; and (2) stable and automatic calculation can be easily performed.
We provide a non-parametric and a parametric approach to investigate the equivalence (or non-inferiority) of two survival curves, obtained from two given datasets. The test is based on the creation of confidence intervals at pre-specified time points. For the non-parametric approach, the curves are given by Kaplan-Meier curves and the variance for calculating the confidence intervals is obtained by Greenwood's formula. The parametric approach is based on estimating the underlying distribution, where the user can choose between a Weibull, Exponential, Gaussian, Logistic, Log-normal or a Log-logistic distribution. Estimates for the variance for calculating the confidence bands are obtained by a (parametric) bootstrap approach. For this bootstrap censoring is assumed to be exponentially distributed and estimates are obtained from the datasets under consideration. All details can be found in K.Moellenhoff and A.Tresch: Survival analysis under non-proportional hazards: investigating non-inferiority or equivalence in time-to-event data <arXiv:2009.06699>.
This package provides EIOPA (European Insurance And Occupational Pensions Authority) risk-free rates. Please note that the author of this package is not affiliated with EIOPA. The data is accessed through a REST API available at <https://mehdiechchelh.com/api/>.
The EconDataverse is a universe of open-source packages to work seamlessly with economic data. This package is designed to make it easy to install and load multiple EconDataverse packages in a single step. Learn more about the EconDataverse at <https://www.econdataverse.org>.
This package implements the exponential Factor Copula Model (eFCM) of Castro-Camilo, D. and Huser, R. (2020) for spatial extremes, with tools for dependence estimation, tail inference, and visualization. The package supports likelihood-based inference, Gaussian process modeling via Matérn covariance functions, and bootstrap uncertainty quantification. See Castro-Camilo and Huser (2020) <doi:10.1080/01621459.2019.1647842>.
This package provides a function that quickly computes the fine structure isotope patterns of a set of chemical formulas to a given degree of accuracy (up to the limit set by errors in floating point arithmetic). A data-set comprising the masses and isotopic abundances of individual elements is also provided and calculation of isotopic gross structures is also supported.
This package provides fast dynamic-programming algorithms in C++'/'Rcpp (with pure R fallbacks) for the exact finite-sample distributions and p-values of Christoffersen (1998) independence (IND) and conditional-coverage (CC) VaR backtests. For completeness, it also provides the exact unconditional-coverage (UC) test following Kupiec (1995) via a closed-form binomial enumeration. See Christoffersen (1998) <doi:10.2307/2527341> and Kupiec (1995) <doi:10.3905/jod.1995.407942>.
Set of tools to simplify application of atomic forecast verification metrics for (comparative) verification of ensemble forecasts to large data sets. The forecast metrics are imported from the SpecsVerification package, and additional forecast metrics are provided with this package. Alternatively, new user-defined forecast scores can be implemented using the example scores provided and applied using the functionality of this package.
Estimation of the sample univariate, cross and return time extremograms. The package can also adds empirical confidence bands to each of the extremogram plots via a permutation procedure under the assumption that the data are independent. Finally, the stationary bootstrap allows us to construct credible confidence bands for the extremograms.