Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Empirical Bayes ranking applicable to parallel-estimation settings where the estimated parameters are asymptotically unbiased and normal, with known standard errors. A mixture normal prior for each parameter is estimated using Empirical Bayes methods, subsequentially ranks for each parameter are simulated from the resulting joint posterior over all parameters (The marginal posterior densities for each parameter are assumed independent). Finally, experiments are ordered by expected posterior rank, although computations minimizing other plausible rank-loss functions are also given.
This package provides a set of extensions for the ergm package to fit weighted networks whose edge weights are ranks. See Krivitsky and Butts (2017) <doi:10.1177/0081175017692623> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
"Evolutionary Virtual Education" - evolved - provides multiple tools to help educators (especially at the graduate level or in advanced undergraduate level courses) apply inquiry-based learning in general evolution classes. In particular, the tools provided include functions that simulate evolutionary processes (e.g., genetic drift, natural selection within a single locus) or concepts (e.g. Hardy-Weinberg equilibrium, phylogenetic distribution of traits). More than only simulating, the package also provides tools for students to analyze (e.g., measuring, testing, visualizing) datasets with characteristics that are common to many fields related to evolutionary biology. Importantly, the package is heavily oriented towards providing tools for inquiry-based learning - where students follow scientific practices to actively construct knowledge. For additional details, see package's vignettes.
Computing economic analysis in civil infrastructure and ecosystem restoration projects is a typical activity. This package contains Standard cost engineering and engineering economics methods that are applied to convert between present, future, and annualized costs. Newnan D. (2020) <ISBN 9780190931919> â Engineering Economic Analysisâ .
Set of functions to keep track and find objects in user-defined environments by identifying environments by name --which cannot be retrieved with the built-in function environmentName(). The package also provides functionality to obtain simplified information about function calling chains and to get an object's memory address.
This framework enables forecasting and extrapolating measures of conditional risk (e.g. of extreme or unprecedented events), including quantiles and exceedance probabilities, using extreme value statistics and flexible neural network architectures. It allows for capturing complex multivariate dependencies, including dependencies between observations, such as sequential dependence (time-series). The methodology was introduced in Pasche and Engelke (2024) <doi:10.1214/24-AOAS1907> (also available in preprint: Pasche and Engelke (2022) <doi:10.48550/arXiv.2208.07590>).
Collection of data sets from various assessments that can be used to evaluate psychometric models. These data sets have been analyzed in the following papers that introduced new methodology as part of the application section: Jimenez, A., Balamuta, J. J., & Culpepper, S. A. (2023) <doi:10.1111/bmsp.12307>, Culpepper, S. A., & Balamuta, J. J. (2021) <doi:10.1080/00273171.2021.1985949>, Yinghan Chen et al. (2021) <doi:10.1007/s11336-021-09750-9>, Yinyin Chen et al. (2020) <doi:10.1007/s11336-019-09693-2>, Culpepper, S. A. (2019a) <doi:10.1007/s11336-019-09683-4>, Culpepper, S. A. (2019b) <doi:10.1007/s11336-018-9643-8>, Culpepper, S. A., & Chen, Y. (2019) <doi:10.3102/1076998618791306>, Culpepper, S. A., & Balamuta, J. J. (2017) <doi:10.1007/s11336-015-9484-7>, and Culpepper, S. A. (2015) <doi:10.3102/1076998615595403>.
Enables launching a series of simulations of a computer code from the R session, and to retrieve the simulation outputs in an appropriate format for post-processing treatments. Five sequential sampling schemes and three coupled-to-MCMC schemes are implemented.
Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.
This package contains methods for the estimation of Shannon's entropy, variants of Renyi's entropy, mutual information, Kullback-Leibler divergence, and generalized Simpson's indices. The estimators used have a bias that decays exponentially fast.
Instead of counting observations before and after a subset() call, the ExclusionTable() function reports the number before and after each subset() call together with the number of observations that have been excluded. This is especially useful in observational studies for keeping track how many observations have been excluded for each in-/ or exclusion criteria. You just need to provide ExclusionTable() with a dataset and a list of logical filter statements.
Chat with large language models from a range of providers including Claude <https://claude.ai>, OpenAI <https://chatgpt.com>, and more. Supports streaming, asynchronous calls, tool calling, and structured data extraction.
Estimate prior variable weights for Bayesian Additive Regression Trees (BART). These weights correspond to the probabilities of the variables being selected in the splitting rules of the sum-of-trees. Weights are estimated using empirical Bayes and external information on the explanatory variables (co-data). BART models are fitted using the dbarts R package. See Goedhart and others (2023) <doi:10.1002/sim.70004> for details.
This package provides a Shiny web application for energy industry analytics. Take an overview of the industry, measure Key Performance Indicators, identify changes in the industry over time, and discover new relationships in the data.
This extension of the pattern-oriented modeling framework of the poems package provides a collection of modules and functions customized for modeling disease transmission on a population scale in a spatiotemporally explicit manner. This includes seasonal time steps, dispersal functions that track disease state of dispersers, results objects that store disease states, and a population simulator that includes disease dynamics.
The encompassing test is developed based on multi-step-ahead predictions of two nested models as in Pitarakis, J. (2023) <doi:10.48550/arXiv.2312.16099>. The statistics are standardised to a normal distribution, and the null hypothesis is that the larger model contains no additional useful information. P-values will be provided in the output.
An approach and software for modelling marine and freshwater ecosystems. It is articulated entirely around trophic levels. EcoTroph's key displays are bivariate plots, with trophic levels as the abscissa, and biomass flows or related quantities as ordinates. Thus, trophic ecosystem functioning can be modelled as a continuous flow of biomass surging up the food web, from lower to higher trophic levels, due to predation and ontogenic processes. Such an approach, wherein species as such disappear, may be viewed as the ultimate stage in the use of the trophic level metric for ecosystem modelling, providing a simplified but potentially useful caricature of ecosystem functioning and impacts of fishing. This version contains catch trophic spectrum analysis (CTSA) function and corrected versions of the mf.diagnosis and create.ETmain functions.
Drafting an epidemiological report in Microsoft Word format for a given disease, similar to the Annual Epidemiological Reports published by the European Centre for Disease Prevention and Control. Through standalone functions, it is specifically designed to generate each disease specific output presented in these reports and includes: - Table with the distribution of cases by Member State over the last five years; - Seasonality plot with the distribution of cases at the European Union / European Economic Area level, by month, over the past five years; - Trend plot with the trend and number of cases at the European Union / European Economic Area level, by month, over the past five years; - Age and gender bar graph with the distribution of cases at the European Union / European Economic Area level. Two types of datasets can be used: - The default dataset of dengue 2015-2019 data; - Any dataset specified as described in the vignette.
Please note: active development has moved to packages validate and errorlocate'. Facilitates reading and manipulating (multivariate) data restrictions (edit rules) on numerical and categorical data. Rules can be defined with common R syntax and parsed to an internal (matrix-like format). Rules can be manipulated with variable elimination and value substitution methods, allowing for feasibility checks and more. Data can be tested against the rules and erroneous fields can be found based on Fellegi and Holt's generalized principle. Rules dependencies can be visualized with using the igraph package.
Error-driven learning (based on the Widrow & Hoff (1960)<https://isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf> learning rule, and essentially the same as Rescorla-Wagner's learning equations (Rescorla & Wagner, 1972, ISBN: 0390718017), which are also at the core of Naive Discrimination Learning, (Baayen et al, 2011, <doi:10.1037/a0023851>) can be used to explain bottom-up human learning (Hoppe et al, <doi:10.31234/osf.io/py5kd>), but is also at the core of artificial neural networks applications in the form of the Delta rule. This package provides a set of functions for building small-scale simulations to investigate the dynamics of error-driven learning and it's interaction with the structure of the input. For modeling error-driven learning using the Rescorla-Wagner equations the package ndl (Baayen et al, 2011, <doi:10.1037/a0023851>) is available on CRAN at <https://cran.r-project.org/package=ndl>. However, the package currently only allows tracing of a cue-outcome combination, rather than returning the learned networks. To fill this gap, we implemented a new package with a few functions that facilitate inspection of the networks for small error driven learning simulations. Note that our functions are not optimized for training large data sets (no parallel processing), as they are intended for small scale simulations and course examples. (Consider the python implementation pyndl <https://pyndl.readthedocs.io/en/latest/> for that purpose.).
Package implements the EDNE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. "EDNE" abbreviates "Euclidean Distance between the Non-standardized Expected values". The EDNE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Euclidean distance. The test is an asymptotically valid test for the family of distributions fulfilling the assumptions of the multivariate central limit theorem (see Hoffelder et al.,2015). The function EDNE.EQ() implements the EDNE-test for equivalence according to Hoffelder et al. (2015). The function EDNE.EQ.dissolution.profiles() implements a variant of the EDNE-test for equivalence analyses of dissolution profiles (see Suarez-Sharp et al.,2020 <DOI:10.1208/s12248-020-00458-9>). EDNE.EQ.dissolution.profiles() checks whether the quadratic mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The current regulatory standard approach for equivalence analyses of dissolution profiles is the similarity factor f2. The statistical hypotheses underlying EDNE.EQ.dissolution.profiles() coincide with the hypotheses for f2 (see Hoffelder et al.,2015, Suarez-Sharp et al., 2020).
This package provides wrap functions to export and import graphics and data frames in R to microsoft office. And This package also provide write out figures with lots of different formats. Since people may work on the platform without GUI support, the package also provide function to easily write out figures to lots of different type of formats. Now this package provide function to extract colors from all types of figures and pdf files.
Interface to Eurostatâ s API (SDMX 2.1) with fast data.table-based import of data, labels, and metadata. On top of the core functionality, data search and data description/comparison functions are also provided. Use <https://github.com/alekrutkowski/eurodata_codegen> â a point-and-click app for rapid and easy generation of richly-commented R code â to import a Eurostat dataset or its subset (based on the eurodata::importData() function).
Structure mining from XGBoost and LightGBM models. Key functionalities of this package cover: visualisation of tree-based ensembles models, identification of interactions, measuring of variable importance, measuring of interaction importance, explanation of single prediction with break down plots (based on xgboostExplainer and iBreakDown packages). To download the LightGBM use the following link: <https://github.com/Microsoft/LightGBM>. EIX is a part of the DrWhy.AI universe.